
Using semantic knowledge to improve compression on
log files

Submitted in fulfilment

of the requirements of the degree

Master of Science

at Rhodes University

Frederick John Otten

June 2008

Abstract

With the move towards global and multi-national companies, information technology infrastruc-
ture requirements are increasing. As the size of these computer networks increases, it becomes
more and more difficult to monitor, control, and secure them. Networks consist of a number
of diverse devices, sensors, and gateways which are often spread over large geographical areas.
Each of these devices produce log files which need to be analysed and monitored to provide net-
work security and satisfy regulations. Data compression programs such as gzip and bzip2 are
commonly used to reduce the quantity of data for archival purposes after the log files have been
rotated. However, there are many other compression programs which exist - each with their own
advantages and disadvantages. These programs each use a different amount of memory and take
different compression and decompression times to achieve different compression ratios. System
log files also contain redundancy which is not necessarily exploited by standard compression
programs. Log messages usually use a similar format with a defined syntax. In the log files, all
the ASCII characters are not used and the messages contain certain "phrases" which often re-
peated. This thesis investigates the use of compression as a means of data reduction and how the
use of semantic knowledge can improve data compression (also applying results to different sce-
narios that can occur in a distributed computing environment). It presents the results of a series
of tests performed on different log files. It also examines the semantic knowledge which exists
in maillog files and how it can be exploited to improve the compression results. The results from
a series of text preprocessors which exploit this knowledge are presented and evaluated. These
preprocessors include: one which replaces the timestamps and IP addresses with their binary
equivalents and one which replaces words from a dictionary with unused ASCII characters. In
this thesis, data compression is shown to be an effective method of data reduction producing up
to 98 percent reduction in filesize on a corpus of log files. The use of preprocessors which exploit
semantic knowledge results in up to 56 percent improvement in overall compression time and up
to 32 percent reduction in compressed size.

Acknowledgements

Firstly I would like to thank God “For from him and through him and to him are ALL things”
(Romans 11:36 [NIV], Emphasis added). My life is a testimony of his mercy and grace. I would
also like to thank my family, friends and church (His People Grahamstown) for their support and
encouragement as I have travelled along this long road.

I would like to specially thank my supervisors, Barry Irwin and Hannah Thinyane, for the count-
less hours they have spent helping me and for their wisdom and direction. I would also like to
thank all the people in the Computer Science Department, particularly my peers Mosiuoa Tsietsi,
J-P van Riel, Thamsanqa Moyo, Shaun Miles, Kevin Glass, Mamello Thinyane, Nyasha Chig-
wamba, Osedum Igumbor and John Richter, for their advice, ideas and encouragement during
the course of this degree. They have been very valuable and helpful.

I would finally like to thank Telkom SA for their generous sponsorship over the course of my
studies.

The Albany Schools Network is acknowledged for the provision of the log files. The sponsors
of the Center of Excellence at Rhodes University (Telkom SA, Business Connexion, Comverse,
Verso Technologies, THRIP, Stortech, Tellabs, Mars Technologies, Amatole Telecommunication
Services, Bright Ideas 39, Open Voice and the National Research Foundation) are also acknowl-
edged.

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Network Monitoring . 2

1.1.2 Distributed and Centralised monitoring 3

1.1.3 Dealing with the quantity of information 6

1.2 Problem Statement . 6

1.2.1 Research Questions . 8

1.3 Approach . 8

1.4 Document Structure . 9

2 Related Work 11

2.1 Fundamental concepts . 11

2.1.1 Redundancy . 12

2.1.2 Compression Techniques . 12

2.1.3 Entropy . 13

2.1.4 Definitions . 13

2.2 Coding Techniques . 14

2.2.1 Huffman coding . 15

2.2.2 Unary coding . 17

2.2.3 Arithmetic encoding . 17

i

CONTENTS ii

2.2.4 Range Encoding . 18

2.2.5 Run length encoding . 18

2.2.6 Move-to-front coding . 18

2.2.7 Other Coding Techniques . 19

2.3 Compression Algorithms . 20

2.3.1 Lempel-Ziv Compression Algorithms 20

2.3.2 Prediction by Partial Matching (PPM) 22

2.3.3 Burrows and Wheeler Compression Algorithm 29

2.3.4 Statistical compressors . 37

2.3.5 Context-Mixing Algorithms . 38

2.4 Word-based Compression Algorithms . 40

2.5 Using text preprocessors to improve text compression 42

2.6 Improving Log Compression . 48

2.6.1 LogPack . 48

2.6.2 Web log compression . 49

2.6.3 IBM Blue Gene/L Log Files . 50

2.7 Compression Program used in this Thesis . 50

2.7.1 ppmd . 51

2.7.2 gzip . 52

2.7.3 7zip . 52

2.7.4 lzop . 52

2.7.5 arj . 53

2.7.6 zip . 53

2.7.7 bzip2 . 53

2.8 Summary . 54

CONTENTS iii

3 Data Compression 55

3.1 Testing Methodology . 55

3.1.1 Test Corpus . 56

3.1.2 Compression and Decompression Tests 56

3.1.3 Memory Utilisation tests . 57

3.2 Results and Analysis . 58

3.2.1 Compression Ratio . 58

3.2.2 Compression and Decompression Times 64

3.2.3 Transfer Times . 66

3.2.4 Memory Utilisation . 73

3.2.5 Summary of Results . 76

3.3 Scenarios . 77

3.3.1 Filtering logs through to the central point for analysis 77

3.3.2 Real-time monitoring . 78

3.3.3 Quick access to stored compressed information 78

3.3.4 Low system time usage for compression and decompression 79

3.4 Summary . 79

4 Initial Semantic Investigation 80

4.1 Timestamps and IP addresses . 81

4.1.1 Methodology . 83

4.1.2 Results and Analysis . 86

4.1.3 Summary . 93

4.2 Analysis of Semantics contained in maillog files 94

4.2.1 Methodology . 95

4.2.2 Results and Analysis . 99

4.2.3 Summary . 101

4.3 Summary . 102

CONTENTS iv

5 Word-based replacement 103

5.1 Constructing a dictionary . 104

5.1.1 Definition of a word . 105

5.1.2 Function for a score . 105

5.1.3 Putting this together . 106

5.1.4 Applying the dictionary . 107

5.1.5 Implementation . 108

5.1.6 The length of a code . 111

5.2 Testing Methodology . 112

5.3 Results and Analysis . 113

5.3.1 Compression Ratio . 115

5.3.2 Compression and Decompression Times 121

5.3.3 Transfer Times . 129

5.3.4 Memory Utilisation . 138

5.3.5 Summary of Results . 141

5.4 Summary . 143

6 Further Semantic Compression 144

6.1 Using the previous month’s dictionary . 145

6.1.1 Methodology . 145

6.1.2 Results and Analysis . 145

6.2 Combining The Results of Other Dictionary . 147

6.2.1 Methodology . 147

6.2.2 Results and Analysis . 148

6.2.3 Summary . 150

6.3 Constructing a Custom Dictionary . 150

6.3.1 Methodology . 150

CONTENTS v

6.3.2 Results and Analysis . 164

6.3.3 Summary . 166

6.4 Scenarios . 168

6.4.1 Filtering logs through to the central point for analysis 169

6.4.2 Real-time monitoring . 169

6.4.3 Quick access to stored compressed information 170

6.4.4 Low system time usage for compression and decompression 170

6.5 Summary . 171

7 Conclusion 172

7.1 Summary of work . 172

7.2 Answering Research Questions . 173

7.2.1 How effective is compression in reducing the size of the log file and how
much resources (time and memory) are used by the compression programs?173

7.2.2 What sort of semantic knowledge exists within the log files? 174

7.2.3 Can this semantic knowledge be exploited to improve data compression? 175

7.2.4 In different monitoring scenarios, which compression programs are the
best choice to reduce the quantity of data? 177

7.3 Reflection . 178

7.4 Future work . 179

7.4.1 Improving the preprocessors . 179

7.4.2 Analysing other types of log files . 179

7.4.3 Implementing a plugin for rsyslog . 180

References 181

A Statistical Methods 195

A.1 Hypothesis Tests . 195

CONTENTS vi

A.2 Paired Difference . 195

A.3 Pearson’s Correlation Coefficient . 196

A.4 Chi-Squared Goodness-of-Fit Test . 196

B Construction of a ruleset 197

B.1 Using a single maillog file . 197

B.2 Extra rules for larger corpus . 200

C Analysis of Semantics 204

C.1 "Handmade" analysis . 204

C.2 Analysis with tool . 206

C.3 Analysing the larger corpus . 209

D Zero-Frequency characters 218

E Electronic Appendix 219

E.1 Scripts . 219

E.1.1 Compression tests . 219

E.1.2 Memory Utilisation tests . 219

E.1.3 Date and IP preprocessors . 219

E.1.4 Analysis of syslog message semantic 220

E.1.5 Dictionary generation . 220

E.2 Detailed Results . 220

E.3 Analysis of Results for different compression levels 220

E.4 Electronic References and Web References . 220

List of Figures

2.1 Huffman tree for the string "this is a test" . 16

2.2 Suffix tree for the string "abcabc$" . 33

2.3 Context Trees for string "abcabc$" . 34

3.1 Lowest transfer times for all compression programs at transfer speed between 1
KBps and 10 KBps . 67

3.2 Lowest transfer times for all compression programs at transfer speed between 10
KBps and 1000 KBps . 68

3.3 Lowest transfer times for all compression programs at transfer speed between
1000 KBps and 30000 KBps . 69

3.4 Compression Ratio versus Memory Utilisation for all compression levels of all
compression programs . 75

4.1 Mail server storing log file and user accessing it without preprocessing 80

4.2 Mail server storing log file and user accessing it with preprocessing 81

5.1 Character Distribution of the 3MB maillog file 103

5.2 Compressed size and compression time for 3MB log file when using longer codes 112

5.3 Difference between lowest transfer times for each program and lowest overall
transfer time for the maillog corpus . 130

5.4 Average Percentage Improvement in Transfer Time for the six preprocessors . . . 131

5.5 Differences between lowest average transfer times over all word scores for each
algorithm . 132

vii

LIST OF FIGURES viii

5.6 Average percentage improvement in the fastest transfer time by compression pro-
grams when using preprocessors . 134

6.1 Spiral model for developing final custom dictionary 151

List of Tables

2.1 Arithmetic encoding intervals for the string “test” 17

2.2 Results for Compression Tests on Calgary Corpus performed by Mahoney [98] . 50

3.1 Corpus of different log files used for testing data compression programs 56

3.2 Shannon Entropy (in bpc) for each log file in the corpus 58

3.3 Pearson correlation coefficient for Average Compression Ratio vs Shannon Entropy 59

3.4 Compression Ratio Ranking on entire corpus 60

3.5 Compression Ratio Ranking on corpus without LibPCap data file 60

3.6 Difference between the compression ratio achieved on the corpus and the com-
pression ratio achieved on the LibPCap File . 61

3.7 Rankings of compression ratios achieved by each compression programs 63

3.8 Ranking of compression time, decompression time and total time (weighed av-
erage in seconds) for all compression programs 64

3.9 Compression Time, Decompression Time and Total Time (all in seconds) for the
two classes of lzop compression levels . 65

3.10 Ranking of lowest compression time, decompression time and total time 66

3.11 Maximum transfer speeds at which compression program shows improvement . . 70

3.12 Ranking of transfer time for compression programs at slower connection speeds 71

3.13 Ranking of transfer time for compression programs at broadband connection speeds 72

3.14 Ranking of transfer time for compression programs at LAN and Wireless con-
nection speeds . 72

ix

LIST OF TABLES x

3.15 Memory utilised (in MB) by compression programs when compressing and de-
compressing the corpus . 73

3.16 Average Rank for Memory Utilisation and Least Memory Utilisation by each
compression program for compression and decompression 75

3.17 Average ranks of the results for each compression program 76

4.1 Log formats used by the seven log files in the corpus 85

4.2 Size of files in bytes (ratio to Original Size) after preprocessing with T and T&IP 86

4.3 Percentage reduction in line length (line length and reduction in bytes) when
transforming timestamp to binary . 86

4.4 Number of IP Addresses and difference in compression ratio for T and T&IP . . 87

4.5 Character-based entropy for files before and after preprocessing with T and T&IP 87

4.6 Number of bits required to encode binary characters contained in the files pre-
processed with T and T&IP . 88

4.7 Average compression ratio and average improvement in compression ratio with
the use of T and T&IP (ordered by average improvement from largest to smallest) 89

4.8 Difference between improvement of T and T&IP 90

4.9 Time (in seconds) to perform transformations on log files in the corpus for T and
T&IP . 91

4.10 Average times in seconds (percentage improvement) when using preprocessors
T and T&IP with standard compression programs 92

4.11 Average difference between times (percentage difference) for T and T&IP (or-
dered by percentage difference) . 93

4.12 Frequency of processes in the 3MB maillog file 100

4.13 Distribution of processes in 15 month maillog corpus (Top 5 processes shown) . . 100

5.1 Times (in seconds) to build dictionary for each of the six word-score combina-
tions using the three implementations . 109

5.2 Average Compression Ratios achieved by the the six preprocessors 113

5.3 Compression Ratio statistics for each Word Score 115

LIST OF TABLES xi

5.4 Difference between Payload Ratio (for all six preprocessors) and Compression
Ratio (without preprocessing) . 116

5.5 Ratio of characters preprocessed files which are binary characters 117

5.6 Average length of words in dictionary for each word-score combination 117

5.7 Average number of word-replacements by each preprocessor 117

5.8 Compression Ratio for each Compression Program when using preprocessors . . 118

5.9 Average Improvement in compression ratio for Compression Programs when us-
ing preprocessors . 119

5.10 Compression program ranking summary . 120

5.11 Compression levels which show improvement on lowest compression ratio with-
out preprocessing . 121

5.12 Times (in seconds) taken by preprocessors to perform the transformations 121

5.13 Compression Times (in seconds) for standard compression programs when using
different preprocessors . 122

5.14 Decompression Times (in seconds) for standard compression programs when
using different preprocessors . 123

5.15 Total Times (in seconds) for standard compression programs when using differ-
ent preprocessors . 124

5.16 Correlation (using Pearson correlation coefficient) between the improvement in
time and the reduction by the preprocessor . 126

5.17 Rankings of times (improvement) for standard compression programs when us-
ing preprocessors . 127

5.18 Preprocessors rankings for improvement in time 128

5.19 Transfer speeds (in KBps) for different preprocessors at which transitions occurs
between the compression programs . 133

5.20 Transfer speed (in KBps) at which compression programs are no longer beneficial 134

5.21 Transfer speed (in KBps) at which compression programs are no longer benefi-
cial (preprocessed) . 135

LIST OF TABLES xii

5.22 Ranking of transfer time (improvement in transfer time) for compression pro-
grams at slower compression speeds . 136

5.23 Ranking of transfer time (improvement in transfer time) for compression pro-
grams at broadband connection speeds . 137

5.24 Ranking of transfer time (improvement in transfer time) for compression pro-
grams at LAN and Wireless connection speeds 137

5.25 Rank of average improvement in transfer time for standard compression pro-
grams when using preprocessors . 138

5.26 Average memory utilisation (in MB) by compression programs on the two corpii 139

5.27 Improvement in Memory usage for compression when using preprocessors 139

5.28 Improvement in Memory usage for decompression when using preprocessors . . 140

5.29 Rankings of the results (Ranking of improvement) achieved by compression pro-
grams with the use of preprocessors . 141

5.30 Rankings of improvements by the preprocessors 142

6.1 Performance of own and previous month dictionaries 146

6.2 Improvement in compression ratio using PM and PMU 146

6.3 Number of Words which can be found in given amount of dictionaries 147

6.4 Results for COMBNUM and COMBNONUM dictionaries 148

6.5 Average improvement in compression ratio when using COMBNONUM and COMB-
NUM . 149

6.6 Characters from the list of zero-frequency characters which are used within files
of the maillog corpus . 152

6.7 Frequency of two digit numbers between 00 and 60 included in the dictionary
and numbers between 00 and 31 which are not included 155

6.8 Ranking of words relating to process names in previous dictionaries 157

6.9 IP addresses and hostnames involved in the network 159

6.10 Lines in the corpus containing the format hostname [IP] 160

6.11 Number of lines containing a given value for status 161

LIST OF TABLES xiii

6.12 Occurrences of the word "MTA" . 162

6.13 Compression Ratios achieved by MYCUST, MYCUST2 and MYPHRASE on the
maillog corpus . 165

6.14 Average improvement in compression ratio achieved for compression programs
when using MYCUST, MYCUST2 and MYPHRASE 166

7.1 Top two compression programs and preprocessors for each of the four scenarios . 177

List of Algorithms

1 Algorithm to calculate binary date for syslog file 84
2 Algorithm to calculate binary date for squid access log 84
3 Algorithm to calculate binary date for apache web log 84
4 Construction of Dictionary Mapping (the function h−1(a)) 107

xiv

Glossary Of Terms

A.1: Word replacement preprocessor which uses a dictionary built from the file using word
definition A and word score 1 (these are defined in Section 5.1.1 and Section 5.1.2
respectively).

A.2: Word replacement preprocessor which uses a dictionary built from the file using word
definition A and word score 2 (these are defined in Section 5.1.1 and Section 5.1.2
respectively).

All: All is a preprocessor which uses a dictionary constructed using the whole corpus of
maillogs.

ASCII: American Standard Code for Information Interchange (ASCII) is a standard used for
character encoding in PCs. There are 256 different ASCII characters codes available
which represent letters, new line characters, and punctuation marks.

B.1: Word replacement preprocessor which uses a dictionary built from the file using word
definition B and word score 1 (these are defined in Section 5.1.1 and Section 5.1.2
respectively).

B.2: Word replacement preprocessor which uses a dictionary built from the file using word
definition B and word score 2 (these are defined in Section 5.1.1 and Section 5.1.2
respectively).

BWCA: The Burrows and Wheeler Compression Algorithm (BWCA) is a block sorting com-
pression algorithm. It is described in Section 2.3.3.

BWT: The Burrow-Wheeler Transform (BWT) is the central part of the BWCA. It computes a
permutation of the input sequence which can easily be compressed by simple compres-
sion algorithms such as Move-To-Front coding.

xv

GLOSSARY OF TERMS xvi

C.1: Word replacement preprocessor which uses a dictionary built from the file using word
definition C and word score 1 (these are defined in Section 5.1.1 and Section 5.1.2
respectively).

C.2: Word replacement preprocessor which uses a dictionary built from the file using word
definition C and word score 2 (these are defined in Section 5.1.1 and Section 5.1.2
respectively).

CombNoNum: CombNoNum refers a preprocessor (or the dictionary) which uses a dictionary
created by combining the dictionaries for C.2 but excluding all the 2 digit numbers.

CombNum: CombNum refers a preprocessor (or the dictionary) which uses a dictionary created
by combining the dictionaries for C.2.

DEFLATE: DEFLATE is a compression algorithm which combines LZ77 and Huffman coding.

LZ77: LZ77 is a sequential data compression algorithm which replaces reoccuring text with
reference to previous text. It is described in Section 2.3.1.

LZ78: LZ78 is the successor to LZ77. It scans forward in the input data. It is described in
Section 2.3.1.

LZC: LZC is the implementation of LZW used by the compress program. It is free from the
patents associated with LZW.

LZMA: Lempel-Ziv Markov Chain Algorithm (LZMA) is an LZ77-based compression algo-
rithm which also uses Markov models and Range coding. It is used by 7zip for com-
pression.

LZO: Lemple-Ziv-Oberhumer (LZO) is a family of fast compression algorithms based on
LZ78.

LZW: LZW is a sequential compression program which builds a string table and replaces
strings with references to the string table. Further information can be found in Sec-
tion 2.3.1.

MTF: Move To Front (MTF) is a technique for rearranging a list so that recent characters occur
at the begining of the list.

MyCust: MyCust is a preprocessor which uses MyCustD for word replacement.

GLOSSARY OF TERMS xvii

MyCust2: MyCust2 is a preprocessor which uses MyCust2D for word replacement.

MyCust2D: MyCust2D is the dictionary based on MyCustD but includes changes based on an
anylsis of the context in which words occur.

MyCustD: MyCustD is the dictionary built using the semantic knowlege derived from the anal-
ysis of maillog files.

MyPhrase: MyPhrase is a preprocessor which uses MyPhraseD for replacement.

MyPhraseD: MyPhraseD is a dictionary based on MyCust2D but includes phrases as well as
words.

PM: PM is a preprocessor which performs word replacement using a dictionary created from
the previous month’s log file.

PMU: PMU is a preprocessor which performs word replacement using a dictionary created
from the previous month’s log file. The word for the month is, however updated to the
current month.

PPM: Prediction by Partial Matching (PPM) is a technique for determining the probability of
the next character based on previous occurances. This technique is described in Section
2.3.2.

PPMII: Prediction by Partial Matching with Information Inheritance (PPMII) is a PPM-based
algorithm used by ppmd. It is described in Section 2.3.2.

RLE: Run length encoding (RLE) is a compression technique which replaces runs on charac-
ters with a count and a single character.

T: Preprocessor which converts the timestamps contained in the file to their binary repre-
sentations.

T&IP: Preprocessor which converts the timestamps and IP addresses contained in the file to
their binary representations.

Chapter 1

Introduction

Modern computer networks consist of a myriad of interconnected, heterogeneous devices in
different physical locations (this is termed a distributed computing environment). Computer net-
works are used by many different sized corporations, educational institutions, small businesses
and research organisations. In many of these networks, monitoring is required to determine
the system state, improve security or gather information. Examples of such scenarios are: large
global corporate networks, which consist of many different mail servers, web servers, file servers
and other machines spanning different countries which need to be monitored to protect valuable
information; wireless sensor networks set up to monitor the movement of a species of animals;
and distributed mail servers which log to a central location. In these scenarios, large quantities
of information need to be gathered for analytical or archival purposes. This requires the reduc-
tion of the quantity of data to minimise bandwidth utilisation, maximise throughput and reduce
storage space requirements. This chapter introduces and motivates the need for data reduction.
It also presents the problem statement, the approach taken and the structure of this document.

1.1 Motivation

This section motivates the need for data reduction and explains how data compression can be used
to reduce the quantity of data. It also discusses the need for network monitoring, the approaches
which can be used and the role of log files.

1

CHAPTER 1. INTRODUCTION 2

1.1.1 Network Monitoring

The growth of the Internet has resulted in a growth in the number and severity of threats to
its users [1]. This creates a large problem for global and multi-national companies which have
networks spread throughout the globe. These networks are under severe threat from sophisticated
worms, viruses and targeted attacks - such as Distributed Denial of Service (DDoS) attacks -
which can lead to downtime, loss of information and attackers obtaining important confidential
information (such as credit card details, account numbers and passwords). Two examples of the
severity of these attacks are: The theft of 1.6 million entries of personal details from the website
monster.com [2]; and an undisclosed amount of data being stolen from the German government
[3]. The vulnerability and economic value of data necessitates the need for monitoring facilities
which can detect events before damage is done. The early diagnosis and response to a situation
potentially saves the life of the system, and protects the data and information involved.

Providing effective network security requires that the confidentiality, integrity and availability
(CIA) of the data, information and knowledge contained within the network is maintained [4].
An understanding and overview of the network, its users, and its operation is therefore key to
being able to keep the network secure.

Situational awareness can be described broadly as a person’s state of knowledge or mental model
of the situation around him or her [5]. Cognitive Psychology defines three levels of situational
awareness [5]:

1. Perceiving critical factors in the environment

2. Understanding what those factors mean, particularly when integrated together in relation
to the decision maker’s goals

3. Understanding what will happen with the system in the near future.

Essentially, network administrators require at least the first level of situational awareness in order
to secure the network. For this to be possible, data from a myriad of heterogeneous devices in the
network needs to be monitored. The lack of information from important devices in the network
can lead to dangerous blind spots in the network [6] and hence ineffective network monitoring.
“The phrase ’forewarned is forearmed’ sums up the value situational awareness. Simply put,
being aware is about being prepared to act and respond” [6]. The information which is required
for effective network monitoring is found in the log files of the devices contained in the network
[7].

CHAPTER 1. INTRODUCTION 3

Regulations such as the Health Insurance Portability and Accountability Act (HIPAA) [8] and the
Sarbanes Oxley Act [9] in the United States of America, and the Electronic Communications and
Transactions (ECT) Act [10] in South Africa, also require that the logs of widely-used services
are kept and monitored for accountability and identity purposes [11]. This places an increased
burden on the storage requirements for previous log files.

For many businesses, the most important requirement is to keep the network running without
downtime, with little regard to the risk level [6]. Most of the time, security administrators spend
their time deploying patches to fill security holes and performing investigations into previous in-
cidents. Current best practices for Internet security rely on word-of-mouth reports of new intru-
sions and security holes through entities such as Computer Emergency Response Team (CERT)
and DSHIELD [1]. The monitoring of logs is not a high priority and is often left to Perl scripts
using regular expressions which are written hastily after CIA has already been violated [12]. The
monitoring of logs is essential for effective network monitoring [7]. System logs, web server
logs, traffic captures and call logs all contain valuable information about different systems.

While network security is a large reason for network monitoring, network monitoring needs
to be performed for a number of purposes including: ensuring proper use and compliance to
set policies [11]; satisfying regulations which require accountability, monitoring and storage of
records; getting information about the users and use of a service for competitive gain [13]; and
attaining usage information so that the users may be billed appropriately. This information is
also contained in log files.

1.1.2 Distributed and Centralised monitoring

A good case can be made for the use of both centralised and distributed monitoring. The choice
largely depends on the size, the number of administrators employed, the security needs of the
business or organisation and criteria such as: the quantity of data involved; the available in-
frastructure; the need for situational awareness; and the regulations to which the business or
organisation needs to adhere.

The previous section established that there is plenty of data and information distributed through-
out the network which needs to be monitored. Providing network security and maintaining CIA
involves an analysis of the large amounts of information generated by different devices dispersed
throughout the network. The goal is to be able to use as much of this data and information to
obtain better information and knowledge, which can then be used to provide better security and
improve business processes.

CHAPTER 1. INTRODUCTION 4

For most networks and businesses, the most important requirement is to keep the network run-
ning without downtime, with little regard to the risk level, at a minimum cost [11]. The vast
quantity of data and information means that compiling the resources necessary to review the data
being received from these heterogeneous systems is an arduous task. There are millions of alerts
and messages generated by each individual system (i.e. systems such as the intrusion detection
systems, anti-virus systems, firewalls, operating systems and access control systems) [6] which
need to monitored.

Employing a distributed approach results in a greater workload for more administrators. In large
networks, this approach can lead to sections of the network being overlooked, creating holes
in the perimeter for intruders to exploit. Most of the devices spread throughout the perimeter
of the network display related activity and complement each other in analysis. In a distributed
approach, administrators work in isolation and do not see the bigger picture of the network.
Collaboration is possible through meetings, reports and email; however, this does not give them
a real-time picture with information related to the event from the entire network at their disposal.
Administrators are also kept busy securing their segment of the network and therefore have little
time for meetings.

A centralised approach can reduce the redundancy by correlating multiple events into a single
event. “Consolidating all of the reports from all of these devices and tying the information to-
gether into a coherent visual artifact closes the window of risk” [6]. A centralised approach, how-
ever, is not always practical and thus collaboration using email and other means generally suffices
- particularly for small organisations with few administrators. For a centralised approach, new
infrastructures need to be put into place and off-site redundancy needs to be provided to avoid the
fatal results should the central facility go down. An example of such a situation would be when
the World Trade Center in New York, which contained many important servers, was attacked by
terrorists on 11 September 2001 [14]. Therefore, although the new infrastructure would cost the
organisation millions of dollars, the long-term benefits and the value of the information being
protected must be considered.

Current security methodologies place a large burden on security administrators. They rarely
have time to monitor logs, and spend most of the time trying to repair and defend against attacks
which have already occurred, rather than monitoring and researching to prevent attacks. The
attack implications, particularly to large organisations, are drastic. Denial of Service (DoS) leads
to a large loss of revenue and organisations could be sued if customer information is obtained
through an attack. Centralisation results in fewer administrators who achieve more, providing a
better utilisation of resources. It also makes automation easier, as management and control can

CHAPTER 1. INTRODUCTION 5

then be deployed from the central location [11].

Essentially then, the quality of network administrator’s work is improved when using a cen-
tralised approach. This improvement is necessary since the frequency and complexity of attacks
are increasing, as new technologies are developed and there is an expansion of networks and
services. With the added pressure of regulatory compliance, and the pressures of security audits,
network administrators are too busy to use inefficient systems and spending time doing tasks
which, ideally, should be automated and centralised. It helps to have a central point where a few
administrators can view the entire network and concentrate on maintaining the CIA within the
network. Network administrators can then be assigned jobs that are more worthy of their talents,
such as diagnosing anomalies and creating prevention schemes [15].

Centralised logs open the possibility of data mining to find new attacks and to detect anomalies.
Statistics can also be generated regarding what constitutes “normal” activity on the network. The
trends that are found during analysis may be utilised to further improve policies. Trends such as
the cessation of events which normally occur with a given frequency, may be overlooked by a
human being. These trends can be found using data mining and then further investigated [15].
The information retrieved from logs is also useful for researchers in their search to define “normal
activity”, which is still an open and difficult research problem [16]. The more data that can be
gathered and correlated, the more accurate intelligence one then has to mitigate and resolve the
event [6]. Forensic and historical data provide maps of past activity. An analysis of these maps
gives a better picture of the attack, it’s operation and the path along which it travelled. This may
lead to the discovery of defense strategies [6]. These maps can also be used as evidence for legal
proceedings against attackers and in strategic planning.

As presented above, there are many reasons for a centralised approach to network monitoring.
In a distributed monitoring approach, a centralised console which can perform analysis on the
activity across the network is still desired. Essentially, this centralised console is merely a node
on the network which collects data and performs analysis or stores the results. The primary
problem with the centralised approach is the large volume of data which needs to be sent to this
point. The quantity, the value, the amount of detail and the number of systems involved are all
increasing with business needs. This is leading to an explosive growth in the amount of data and
information that needs to be monitored. In order to use a centralised approach, then, the quantity
of data needs to be addressed. Even in distributed scenarios where a centralised point is not in
use, it is necessary for log data to be stored at each point for security purposes, to use in forensics
and to satisfy regulations.

CHAPTER 1. INTRODUCTION 6

1.1.3 Dealing with the quantity of information

The problem regarding the quantity of data is compounded by the explosive growth in the amount
of data and information that is involved. The quantity, value, amount of detail and the number of
systems involved are all increasing with business needs. This is leading to new systems which
need to be monitored as well as increased activity which results in more data to be monitored.
One solution for dealing with the quantity of data is to send samples or summaries to the central
point. As mentioned in Section 1.1.1, archives need to be kept for log files associated with
widely-used network services to satisfy regulations (whether using a centralised or distributed
approach). Samples and summaries will not comply with regulations if the original data is not
archived [13]. Samples and summaries are also not guaranteed to provide an accurate view of the
network state and are not as useful for statistical analysis to find new trends since they discard
certain “unimportant” data. These archives can take up a lot of space and so need to be reduced in
size. Due to the costs of bandwidth and the quantity of traffic generated for network monitoring,
steps need to be taken to reduce the quantity of data to be transferred. Data compression is
designed to reduce the size of a given payload. This means that data compression can be used to
deal with the large volume of data associated with network monitoring and can reduce the size of
archives (for both a centralised and distributed approach). It is, therefore, a good approach when
dealing with a large quantity of data.

1.2 Problem Statement

The previous section concluded that data compression was an effective approach for dealing with
the quantity of data that is required for network monitoring. This section defines the problem
statement and lists the research questions which need to be answered.

Much research has been performed on data compression, optimising data compression and text
compression (specifically the compression of English text). This research will be explored in the
next chapter. As mentioned, Log files contain information which is useful for network monitor-
ing. These log files are usually text files which have a defined structure. Many programs use the
syslog format (which is defined in RFC3164 [17]) for logging. The syslog messages contain a
message (less the 1024 bytes) and information about the time, originating host and originating
process of the message. The messages are sent by the originating process to the syslog daemon
which performs the logging of this information. Using syslog, many different processes can

CHAPTER 1. INTRODUCTION 7

log to the same file. It is commonly used by applications on Unix-based operating systems for
logging.

Data compression programs can be used to reduce the size of text files by between 80 and 90
percent. Data compression tests are traditionally performed on a number of standardised corpii
including: The Calgary corpus [18, 19]; the Canterbury corpus [20]; and the Hector corpus
[21]. These data sets contain a number of files, such as: fiction writing, non-fiction writing,
bibliographies, geophysical data, executable code, program code and bitmaps. There are also a
number of other corpii on which tests have been performed, including: the Gutenberg corpus
[22] (which consists of e-books from Project Gutenberg); Reuters-21578 [23]; Reuters Corpus
Volume 1 (RCV1) [24]; and Reuters Corpus Volume 2 (RCV2) [25] (which consist of data from
the Reuters newswire service) .

There are also a number of web sites which contain regular updates on compression programs
and their performance on a number of files including: audio files; text files; books; PDFs; ex-
ecutables; and video files. These web sites include: Maximum Compression [26], Black Fox
benchmark [27], Matthew Mahoney’s Large text benchmark [28], The Squeeze Chart [29], Jeff
Gilchrist’s Archive Comparison Test [30] and Squxe Archivers Chart [31].

Out of all the corpii, only the corpus used by the Maximum Compression website contains a log
file. This means that tests need to be conducted to determine the performance of compression
programs on log files. The performance of the different compression programs on log files needs
to be measured and compared to determine the best compression program for a given scenario.
When performing this comparison, a number of metrics need to be considered, such as: the
resources used; the compression time; the decompression time; and the size of the resulting
payload.

Standard compression programs are not created to compress specific types of files, but rather
they use characteristics such as recently repeated sequences and the distribution of the characters
to reduce the size of files. As mentioned, log files are rather verbose and contain messages which
have a defined structure. This leads to a large amount of redundancy which might not be exploited
by the compression program. A good question would be whether the use of a preprocessor and
postprocessor (which exploits known semantic knowledge about the log files) would improve
the compression ratio and what the performance impact would be. This thesis sets out to also
improve the compression ratio achieved by creating text preprocessors which reduce the size
of the file and lead to a lower compression ratio on the file and improve the performance of
the compression programs. The process of exploiting the semantic information is referred to as

CHAPTER 1. INTRODUCTION 8

semantic compression.

This thesis aims to determine how effective data compression is as a means of data reduction
and to ascertain how the use of semantic knowledge can improve data compression. This thesis
also sets out to apply the results to different scenarios and determine the best combinations of
standard compression programs and preprocessors in these scenarios.

1.2.1 Research Questions

To solve this problem, the following research questions need to be answered:

1. How effective is compression in reducing the size of the log file and how much resources
(time and memory) are used by the compression programs?

2. What sort of semantic knowledge exists within the log files?

3. Can this semantic knowledge be exploited to improve data compression?

4. In different monitoring scenarios, which compression programs are the best choices to
reduce the quantity of data?

1.3 Approach

The following approach was taken to answer these research questions:

1. A collection of scripts to determine the compression ratios, compression times and decom-
pression times when using data compression was compiled

2. These scripts were used to run tests on a collection of log files and the obtained statistics
recorded

3. Maillog files were investigated to determine their structure and evaluate what semantic
knowledge can be exploited to improve the performance of standard compression programs

4. A number of dictionaries were constructed for each maillog file which can be used to per-
form word-replacement and improve the performance of standard compression programs

CHAPTER 1. INTRODUCTION 9

5. These dictionaries were evaluated and a single dictionary constructed which could be used
by a preprocessor for all the log files and achieve a greater amount of improvement than
the individual dictionaries

6. The results were analysed and the performance of the different techniques were evaluated
using the information obtained from the analysis. Conclusions were drawn as to which
combinations yielded the best results for different monitoring scenarios

This approach to answering these research questions is based on empirical evidence from the
experiments (tests) performed. For the tests conducted in this thesis, the scope of compression
programs is limited to compression programs which are available on many different platforms
and which show acceptable compression and decompression times. Tests were conducted using
gzip [32], zip [33], lzop [34], ppmd [35], arj [36], 7zip [37] and bzip2 [38]. These compres-
sion programs and the algorithms which they use will be described in the next chapter.

For different monitoring scenarios, different compression programs are likely to be more appro-
priate since they vary in terms of compression ratio, compression time, decompression time and
memory utilisation. The scenarios which are examined in this thesis are:

1. Filtering logs through to the central point for analysis (where latency is not important, but
there is a desire to use as little bandwidth as possible)

2. Real-time monitoring (where a minimum point-to-point time is desired, using as little re-
sources (memory, time and bandwidth) as possible)

3. Quick access, storing it compressed and later decompressing it for analysis (where fast
decompression is desired, but the compression time does not matter. In addition, there is a
secondary desire to use as little bandwidth as possible)

4. Low system-time-usage for compression and decompression (where fast compression and
decompression times are desired and the compression ratio does not matter)

1.4 Document Structure

The remainder of this document discusses the problem presented in this chapter and presents the
results and analysis of tests performed to answer the research questions. The structure of the
remainder of this document is as follows:

CHAPTER 1. INTRODUCTION 10

Chapter 2 describes the different compression algorithms which can be used for compression.
It shows the main developments in this area and describes methods which have been used
to improve the performance of these compression algorithms. This chapter also discusses
the improvements gained by using word-based compressors and text preprocessors. It con-
cludes by discussing previous work on compressing log files and showing the algorithms
which are used by each of the compression programs tested and motivating their choice.

Chapter 3 investigates how effective data compression programs are at reducing the size of log
files. Tests are performed using all of the compression levels of each of the compression
programs. The memory usage, compression times, decompression times, total times, and
time to transfer the compressed payload at a given rate are all discussed. For each scenario,
a compression program is recommended based on the results presented.

Chapter 4 presents the initial semantic investigation. It investigates the improvement in com-
pression ratio, compression time and decompression time when using a preprocessor which
replaces the IP addresses and timestamps with their binary equivalents. It also investigates
what semantic knowledge is present within the corpus of maillog files and evaluates how
this knowledge can be effectively exploited to improve the performance of data compres-
sion programs on this corpus.

Chapter 5 describes a number of word-based preprocessors which perform word replacement
using a dictionary based on the log file being compressed. It also discusses how the dic-
tionary is constructed and investigates the improvement in compression ratio, compression
time and decompression time when using these word-based preprocessors and the seven
standard compression programs.

Chapter 6 first investigates the improvement by a preprocessor which uses a dictionary based
on the previous month’s log file. It then describes a method for combining the dictionaries
to form a single dictionary and presents the results achieved by a preprocessor which uses
this dictionary. This chapter also discusses the development of a single dictionary based
on the semantics present in the maillog file and the knowledge of the network and presents
the results achieved by a preprocessor which uses this dictionary. Finally, this chapter
recommends a preprocessor and standard compression program for each scenario based
on the results presented.

Chapter 7 concludes this thesis and explains how the research questions have been answered.
It also details the research contributions of this thesis and discusses future work which can
be performed in this project domain.

Chapter 2

Related Work

Data compression is a rather mature field of work. There are many different types of compression
algorithms which are designed to compress different types of data. There are also lossless and
lossy compressors which are tailor made for video and audio compression, as well as lossless
compression algorithms which are designed to work on English text [39].

This chapter focuses on lossless text compression algorithms and the different methods which
have been used in an attempt to improve the compression ratios and compression times of these
algorithms. This chapter begins by defining some fundamental terms and explaining important
concepts in the field of data compression. It then examines the different encoding techniques used
by data compression and explains how important compression algorithms such as the Lempel-
Ziv family of compression algorithms, Prediction by Partial Matching (PPM) and the Burrows
and Wheeler Compression Algorithms (BWCA) perform compression. It also discusses other
statistical compression algorithms as well as context-mixing algorithms. It then investigates the
improvements provided by word-based compressors and text preprocessors and concludes by
discussing previous work on log compression and the compression programs which are used for
testing in this thesis.

2.1 Fundamental concepts

There are a number of fundamental terms and concepts which are used in the field of data com-
pression. The entropy of a file using a model, redundancy present in a file, adaptive algorithms,
dictionary-based compressors, statistical compressors and block based compressors are some of

11

CHAPTER 2. RELATED WORK 12

the common terms and concepts which exist. This section elaborates on the important terms and
concepts which are used in this thesis.

2.1.1 Redundancy

Redundancy is defined as "being redundant", "superfluity", "surplus" while redundant is defined
as "Characterized by superfluity or excess in some respect; having some additional or superfluous
part, element, or feature" [40]. These definitions hold true when referring to redundant data.
Essentially, then redundancy in data refers to patterns in the data source, to data being repeated
in a data source or to discernible differences in the data source.

Terry Welch [41] lists four different types of redundancy that exist in a data source without
explicit knowledge of how the data is interpreted:

1. The distribution of characters - some characters are more probable than others, so shorter
codes for these characters will reduce the size of the data.

2. The repetition of character such as spaces - using a count (such as run-length encoding)
can reduce the size of the data.

3. The high-usage of certain patterns or sequences - this can be identified and given a certain
code, which will reduce the data size

4. Positional redundancy - there may be certain data which always appears in a certain posi-
tion, this can be noted and used to reduce the data size.

Redundancies within a source file are thus exploited by different compression techniques to
create a compressed data source.

2.1.2 Compression Techniques

Compression programs exploit the redundancy in files to create smaller files which can be decom-
pressed to produce the original file. There are many different types of compressors. They may be
block-based, dividing the data into blocks and running an algorithm on each block; dictionary-
based, where they replace words with references to a dictionary; or they may use complex statis-
tical models to predict future characters (statistically-based compressors). Techniques might also

CHAPTER 2. RELATED WORK 13

be performed to improve the possibility of compression. These may be transformations (such as
Burrows-Wheeler transform) or normalizations (such as Branch Call Jump (BCJ), where jump
targets in executable files are normalized before compression) of data.

Compression may also be performed using the distribution of characters in the data to create sta-
tistical codes (such as Arithmetic and Range coders), new fixed length codes or variable length
codes (usually prefix free codes such as Huffman coding). Compressors often use adaptive al-
gorithms where the statistics used are updated by the encoders and decoders as they encode the
data source and decode the encoded data respectively.

2.1.3 Entropy

Entropy, occasionally referred to as Shannon’s entropy, is a measure of how much randomness
exists in a given data source using a particular model. Shannon defines entropy as a measure of
the average information content associated with a random outcome. Quantitatively, this may be
expressed as: H(x) = −

∑n
i=1 p(i)log2p(i), where p(i) is a measure of the probability of the i-th

symbol in an alphabet of n symbols. p(i)log2p(i) is also known as the information content or
self information of i-th symbol.

The entropy rate of a data source is the average number of bits per symbol needed to encode it
[42]. This is usually indicated in bits per character (bpc). This can be calculated by dividing the
size of the output produced with a given source (which is the entropy of that model) by the size
of the source and multiplying it by the amount of bits used for each character in the source.

The character-based entropy uses p(i) = xiPn
i=1 xi

, where xi is the frequency of the i-th symbol
(i.e. the probability of the i-th symbol occurring in the data source). The character-based entropy
gives an indication of the redundancy present due to the distribution of the characters in the data
source. This redundancy can be exploited by coding techniques such as Huffman encoding or
Arithmetic encoding (also known as entropy-based coders).

2.1.4 Definitions

Compression Ratio

This is defined as the size of the compressed payload divided by the size of the original payload.
A lower compression ratio therefore indicates a greater amount of compression. This definition

CHAPTER 2. RELATED WORK 14

is also used by other authors (for example [43, 44, 45]). In some texts, the compression ratio is
defined as the size of the original payload divided by the size of the compressed payload (For
example [41, 46, 47]). Another common method of denoting the compression ratio is using
the bits per character (bpc) (for example [38, 48, 49]). This is the same as multiplying the
compression ratio using the first definition by 8.

Consider a 50KB which is compressed to 12.5KB. The compression ratio would be 0.25 (i.e.
25% or 2 bpc) or 4 using the respective definitions. Using the first definition it is easier to see
that the filesize is reduced by 75% than in the second definition. It is for this reason that this
definition is used.

Payload Ratio

When using preprocessors, there are three different compression ratios. There is the compression
ratio achieved by the preprocessor (the ratio of the preprocessed payload to the original payload),
the overall compression ratio (the ratio of the compressed payload to the original payload) and
compression ratio achieved on the preprocessed file (the ratio of the compressed payload to the
preprocessed payload). In this thesis, the ratio of the compressed payload to the preprocessed
payload is referred to as the payload ratio.

Compression Time

This is defined as the time taken to compress a given payload and write this payload to a com-
pressed file. All times in this thesis (unless specified) are denoted in seconds.

Decompression Time

This is defined as the time taken to decompress a given compressed payload and write this to disk,
thus obtaining the original file which was compressed. All times in this thesis (unless specified)
are denoted in seconds.

2.2 Coding Techniques

There are a variety of coding techniques. These techniques either use variable length codes or
fixed length codes to represent the data. The variable length codes are usually prefix free codes

CHAPTER 2. RELATED WORK 15

(i.e. no codeword is a prefix of another codeword) so that they can be decoded. This section
elaborates on some of the coding techniques which are used in data compression.

2.2.1 Huffman coding

Assuming an alphabet and a cost for each letter in the alphabet (usually the total number of
occurrences of that letter) is given, Huffman coding constructs a prefix-free binary character
code with a minimum cost [50]. It uses a binary tree which is constructed using the following
algorithm:

1. Make each symbol a leaf node with their weights being the cost for each letter (each their
own tree) - i.e a forest of trees [46]

2. While you have more than one tree

(a) Take the two trees with the lowest root node weights

(b) Create a new tree whose root has the weight of the sum of the two trees roots and is
parent of the two trees

In this tree, all the letters in the alphabet are leaf nodes. The connection to the left child is then
assigned the 0 bit, while the connection to the right child is assigned the 1 bit. If the tree is
traversed from the root node to the leaf node, the Huffman code for that particular leaf node is
obtained.

For example consider the string "this is a test". This string consists of the following characters:
"t", "h", "i", "s", "e", "a", " ". When encoding this string using the ASCII character codes, each
of the characters occupies 8 bits. The string "this is a test" therefore occupies 112 bits using
ASCII. Figure 2.1 shows the construction of the Huffman tree for the string "this is a test". If the
tree is traversed from the root node to the leaf node containing "t", the code 10 is obtained. "t" is
therefore encoded using 2 bits instead of being encoded using 8 bits (ASCII). The code for each
letter is obtained in the same manner. Using Huffman coding, the string "this is a test" occupies
38 bits.

Huffman coding is used in the DEFLATE [51] compression algorithm and a modified version of
Huffman coding is used in fax machines.

CHAPTER 2. RELATED WORK 16

Figure 2.1: Huffman tree for the string "this is a test"

CHAPTER 2. RELATED WORK 17

2.2.2 Unary coding

Unary coding is a simple form of entropy encoding developed for Turing machines which rep-
resents a natural number n as n − 1 ones followed by a zero or n − 1 zeros followed by a one
[52]. For example, the newline character has a character code of 10 (in decimal) and would be
represented as 1111111110 or 0000000001 using Unary coding.

2.2.3 Arithmetic encoding

Arithmetic encoding is a form of statistical coding defined in 1987 by Witten et al. [53]. Arith-
metic encoding encodes the message into a single fraction. It is regarded as a generalisation of
Huffman encoding where statistics do not have to have power-of-two relationships to each other
to form optimal prefix free codes [54]. It uses a model of the data to divide the intervals based on
the probability of each characters. This is performed recursively on the interval by splitting the
interval obtained from the previous characters using the probability of the next character until a
number which represents the message is obtained. Consider fixed probabilities of 0.5, 0.3, 0.2
for the characters "t", "e", and "s".

Start Interval [0, 1) [0, 0.5) [0.25, 0.4) [0.37, 0.4)

t [0, 0.5) [0, 0.25) [0.25, 0.325) [0.37, 0.385)

e [0.5, 0.8) [0.25, 0.4) [0.325, 0.37) [0.385, 0.394)

s [0.8, 1) [0.4, 0.5) [0.37, 0.4) [0.394, 0.4)

Table 2.1: Arithmetic encoding intervals for the string “test”

Table 2.1 shows how the intervals are divided starting from the interval [0, 1). The first character
is "t", so the interval becomes [0, 0.5). The next character, "e", falls in the interval [0.25, 0.4), so
the interval becomes [0.25, 0.4). Once the last character, "t", is reached, the interval is [0.37, 0.4),
so "t" falls in the interval [0.37, 0.385). This means that the word "test" can be encoded using any
value within this interval. This can be decoded using the intervals as above. Since any number
within the interval [0.37, 0.385) is also in the interval [0, 0.5), the first character is a "t". This
number is also in the interval [0.25, 0.4), so the second character is a "e". Using this process, the
word "test" can be obtained from any number within the interval [0.37, 0.385).

A process called renormalization is used to prevent the finite precision from becoming a limit
on the total number of symbols that can be encoded [46]. In this process, whenever the range of

CHAPTER 2. RELATED WORK 18

the interval is reduced to the point where all values in the range share certain beginning digits,
those digits are sent to the output. Existing digits can thus be shifted left and new digits can then
be added on the right to expand the range as widely as possible [54]. This prevents the finite
precision imposed by the machine becoming a limiting factor. Arithmetic encoding is a patented
technique; however, it is used by many compression programs for entropy encoding.

2.2.4 Range Encoding

Range encoding is a form of arithmetic encoding that is free from the arithmetic encoding related
patents. It uses integers instead of the numerators of fractions for its intervals (i.e. instead of
starting with an interval of [0, 1), it starts with an interval of [1, 100000)). Range encoding splits
the intervals using probabilities in the same manner as arithmetic encoding (described in the
previous section). Range encoders also perform renormalization; however, it is performed one
byte at a time rather than one bit at a time [55].

2.2.5 Run length encoding

Run length encoding is a simple data compression technique. Runs of data (More than one
consecutive occurrence of a single character) are stored as a single data value and a count. Run
length encoding is used in fax machines, where there is a lot of white space [41].

2.2.6 Move-to-front coding

Move-to-front (MTF) coding is a good technique to improve the compression ratio of data where
symbols occur in close locality. MTF coding is performed as follows:

1. A list (L) of the alphabet is constructed

2. The message which is to be encoded is the parsed from left to right. At each character, the
position of that character in L is output to a stream S, and that character moved to the front
of the L.

3. The stream S is the MTF coded message

CHAPTER 2. RELATED WORK 19

The MTF causes letters which are used more often to be at the beginning of the list L and hence
the lower code words will be used by an entropy encoder. The performance of an entropy encoder
such as Huffman or arithmetic encoding is thus improved by the use of MTF. MTF coding is used
by the Burrows and Wheeler Compression Algorithm [38, 56].

2.2.7 Other Coding Techniques

Besides the coding techniques mentioned, there are a number of other coding techniques which
are important. This section investigates Golomb coding and Shannon-Fano coding.

Golomb coding

Golomb coding is an easy-to-implement entropy encoding scheme proposed by Solomon Golomb
in 1966 [57]. It generally produces suboptimal codes; however, the codes are optimal for alpha-
bets following a geometric distribution [57]. It operates by using an arbitrary parameter (M)
as the divisor to find the quotient and remainder on the data source. The code word is then
formed with a quotient code followed by a remainder code. The quotient code is the quo-
tient encoded with unary coding. The remainder code is the remainder coded in binary using
b = dlog 2 (M)ebits if is is greater than 2b −M or b− 1 bits otherwise. Rice coding is a special
case where the parameter is a power of 2. Rice encoding is less efficient, but easier to imple-
ment in hardware. It is used as the entropy encoding stage of a number of image and audio
compressions methods [46].

Shannon-Fano coding

Shannon-Fano coding is an early form of entropy encoding. It generates sub-optimal prefix-free
codes by arranging symbols from the most probable to least probable and dividing the symbols
into two sets whose total probabilities are as close as possible to being equal. All symbols have
the first digits of their code assigned, 0 for the first set and 1 for the second set. As long as any
sets with more than one element exist, then the same process is applied to those sets. This is
essentially a top-down approach to constructing prefix-free codes, as opposed to Huffman en-
coding which utilizes a bottom-up approach. [42]. Shannon-Fano coding is used in the Implode
compression method for zip files [33].

CHAPTER 2. RELATED WORK 20

2.3 Compression Algorithms

There are many different compression algorithms available. Some compression algorithms are
optimised for different types of data. This section investigates the different compression algo-
rithms available and previous work which has been done to improve their performance. It is
divided into 5 parts. The first part describes the Lempel-Ziv family of algorithms, the second
part describes the prediction by partial matching (PPM), the third part describes the Burrows
and Wheeler compression algorithms, the fourth part describes Context mixing algorithms and
the fifth section describes other statistical compressors such as Dynamic Markov Compression
(DMC).

2.3.1 Lempel-Ziv Compression Algorithms

The are many different algorithms in the Lempel-Ziv (LZ) family of compression algorithms.
These algorithms are based on the concepts presented by Ziv and Lempel in two papers written
in 1977 [58] and 1978 [59]. These papers describe LZ77 and LZ78 respectively. They may be
classified as sequential data compressors [46] since they encode variable-length sequences using
a fixed-length code. These are also known as dictionary compressors since these variable-length
sequences form a dictionary. This section gives details on the main algorithms in the LZ family:
LZ77; LZ78; LZW and LZMA. It also gives details on the DEFLATE algorithm (which is used
in compression programs such as zip and gzip).

LZ77

LZ77 is a compression algorithm defined by Jacob Ziv and Abraham Lempel in 1977 [58]. It
operates using a buffer of previously encountered data from the string, looking for patterns called
reproducible extensions and forming a code from their position in the buffer, the length of the
reproducible extension and the character following it [58]. This is termed sliding window com-
pression. The encoder and decoder keep track of a certain amount of recent data using a data
structure (usually a buffer) called a sliding window. The compression is performed by replacing
patterns in the file with references (length-distance pairs) to the data contained in the sliding
window. “Go back distance characters in the buffer and copy length characters, starting from
that point” is how the length-distance pairs are used.

CHAPTER 2. RELATED WORK 21

LZSS is a derivative of LZ77 created in 1977 by James Storer and Thomas Szymanski. It is
essentially a dictionary-encoding technique. It replaces a string of symbols with a reference to a
dictionary location of the same string. The main difference between LZ77 and LZSS is that in
LZ77 the dictionary reference can actually be longer than the string it is replacing. LZSS uses a
1 bit flag to indicate whether the data is a byte or a length-distance pair [60].

LZ78

LZ78 is a compression algorithm defined by Jacob Ziv and Abraham Lempel in 1978 [59] ex-
panding on their LZ77 algorithm [58]. LZ78 works on future data, forward scanning the input
data and matching it against a dictionary which it maintains. It scans into a buffer until it can not
find a match in the dictionary. At this point it then adds this word to the dictionary and outputs
the codeword corresponding to the last word found in the dictionary (zero if the dictionary is
empty) as well as the character which, when added to the buffer, causes a match not to be found
in the dictionary. Thereafter the buffer is emptied and the forward scanning continues.

LZW

LZW is a compression algorithm defined in 1984 by Terry Welch. It is organised around a
translation table, referred to as a string table, which maps strings of input characters to fixed-
length codes (12 bit codes). The string table has the property that for every string in the table, its
prefix string is also in the table. LZW uses a “greedy” parsing algorithm, where the input string
is examined in one pass, and the longest input string recognized in the string table is used for
encoding. The parsed string, which is extended by the next input character, forms a new string
which is added to the string table [41] (In a similar manner to LZ78). LZW is a patented method,
and therefore has not been widely adopted. It is, however, used in GIF image format.

LZC is an implementation of LZW which uses variable size pointers. It also includes addi-
tional logic for restarting the algorithm when the source file changes its characteristics enough
to worsen compression. It uses hashing to store the dictionary enabling quick lookup. There
are few differences between LZC (which the unix compress program uses) and LZW. When
the dictionary is full, LZW and LZC becomes non-adaptive, however when this occurs, LZC
begins to monitor the compression performance (in terms of ratio). When the performance de-
grades too much, LZC clears the dictionary and restarts the algorithm building a new dictionary.
This improves compression performance. Horspool [45] further improves the compression ratio

CHAPTER 2. RELATED WORK 22

achieved by these programs by up to 8% using binary encoding of string numbers and allowing
the dictionary to fill at a faster rate.

LZMA

Lempel-Ziv Markov Chain Algorithm (LZMA) is an LZ77-based technique which uses a large
dictionary (up to 1GB) and reduces values with a range-encoder rather than Huffman encoding
(used in DEFLATE). No official implementation details are available; however, the SDK avail-
able suggests the use of a range encoder, Patricia tries, hash chains and binary trees [61]. On
the forum located on the source forge site, the author (Igor Pavlov) states that Markov models
are used for class selecting (order 3 - literal, match and repeat match) and encoding the literals
[62]. The match finders used by LZMA use Hash Chains or Binary Trees, depending on the
compression method and compression mode used [37].

DEFLATE

DEFLATE is a compression algorithm which uses a combination of the LZ77 algorithm and
Huffman coding. It is one of the most popular compression algorithms (certainly the most pop-
ular LZ77-based algorithm). It was defined by Phil Katz (creator of PKZIP) and is used for
compression by zip and gzip [51]. zlib is a commonly-used library implementation of the
DEFLATE algorithm [63].

2.3.2 Prediction by Partial Matching (PPM)

PPM is a technique of determining the probabilities of the next character based on previous oc-
currences. When combined with Arithmetic coding it creates an effective compression algorithm
which achieves a low compression ratio. PPM was introduced in 1984 by John Clearly and Ian
Witten with two variants - PPMA and PPMB. Since then, a number of variants and improvements
have been suggested. This section takes a look at the different developments in the PPM tech-
nique, which include: PPMC; PPMP; PPMX; PPMD; PPM*; PPMZ; and PPMII. These PPM
models have not only been applied for data compression, they have also been successfully applied
in a number of different areas including: machine learning of human language; predicting the
stock market; and natural language applications (such as: language identification; cryptography;
and automatically correcting words).

CHAPTER 2. RELATED WORK 23

PPMA and PPMB

PPM takes an adaptive approach to building a model, i.e the model is adapted dynamically as
the stream is processed. As previously mentioned, PPM determines probabilities of the next
character based on the previous characters. The previous characters are referred to as the context.
An nth-order context is defined as the previous n characters. In the string “This string is a great
strin” (where the next character is “g”): the first-order context would be “n”, the second-order
“in”, the third-order context would be “rin”, etc. These contexts are used to predict the next
character as “g”. Two examples of previous third order-contexts which are followed by the letter
“g” are: “ a “ and “rin”. To predict the probabilities of a “g”, the contexts and the characters
which follow are stored with frequencies to calculate the probabilities. For the context “rin”, the
frequency for “g” being the next character is 1, yielding a probability of 0.5. In this manner a
number of Markov models of order N are built (where N is the length of the context). A single
higher-order model would not work since there is a conflict between the desire to use a high-
order Markov model and the need to have them formed quickly as the initial part of the message
is sent. This is resolved with partial string matching. A high-order model is formed but lower-
order predictions are used in the case when high-order ones are not yet available (i.e. using a
partial string of that context). The decoder and encoder use escape characters to back down to the
previous order context. The last order is order-0, where the distribution of characters in the data
source to that point is used to determine the probability. If a character has never occurred then a
further escape character is used followed by the new character. Calculating the probability of an
escape character (i.e. the probability of a character occurring for the first time - a novel event) is a
large, open problem known as the zero frequency problem. The calculation of these probabilities
is where many of the PPM models differ. Clearly and Witten [54] define two methods known as
PPMA and PPMB.

PPMA considers the occurrence of any new character a novel event and counts it as one. This
can be formally written as follows:

Let ϕ be the character which follow a given context, a the size of the coding alphabet, q the
number of characters which has occurred and C the total number of times the given context has
been seen. Using PPMA, p(ϕ) is as follows:

p(ϕ) =

 1
1+C
· 1
a−q c(ϕ) = 0

c(ϕ)
1+C

c(ϕ) > 0

CHAPTER 2. RELATED WORK 24

PPMB is identical to PPMA except for the fact that it only considers the occurrence of a character
a novel event when it has already occurred once. This can be written formally as follows:

Let ϕ be the character which follows a given context, a the size of the coding alphabet, q the
number of characters which has occurred and C the total number of times the given context has
been seen. Using PPMB, p(ϕ) is as follows:

p(ϕ) =

q
C
· 1
a−q c(ϕ) ≤ 1

c(ϕ)−1
C

c(ϕ) > 1

The maximum order for PPMA and PPMB is provided as a parameter. It has been found that
the optimal maximum order grows with the length of the source being compressed [54]. PPMB
achieves, on average, a 2.54 percent lower compression ratio than PPMA.

PPMC

PPMC was proposed by Moffat [64] as an improvement on PPMA and PPMB [54]. It is essen-
tially a hybrid of its predecessors (PPMA and PPMB). Since it is wasteful to only start using a
context for predictions when it has already occurred twice (method B) and it is desirable at the
initial stages to allocate more than a count of 1 to an escape (method A), PPMC counts the escape
as having occurred a number of times equal to the number of distinct symbols encountered in the
context. The total count is hence also inflated by the same amount. This may be written formally
as follows:

Let ϕ be the character which follows a given context, a the size of the coding alphabet, q the
number of characters which has occurred and C the total number of times the given context has
been seen. Using PPMC, p(ϕ) is as follows:

p(ϕ) =

q

C+q
· 1
a−q c(ϕ) = 0

c(ϕ)
C+q

c(ϕ) > 0

PPMC also introduces a technique called update exclusion. In this technique, the symbol count
is only increased in the context levels at or above the context level which the character is suc-
cessfully predicted [64]. The modifications in PPMC result in a ten percent improvement lower
compression ratio than PPMB.

CHAPTER 2. RELATED WORK 25

PPMP and PPMX

PPMP and PPMX were proposed by Witten and Bell [65] as an improvement in estimating the
escape probabilities. They use a Poisson process to improve the approach of estimating the
escape probabilities (inspired by its original use to estimate the number of unseen biological
species). Using this technique, a non-zero estimated probability for novel tokens can be obtained
even though relative frequency is zero. The appearance of each token is formed as a separate
Poisson process. This yields p(esc) = t1

n
− t2

n2 + t3
n3 − · · · . This technique is known as PPMP.

PPMX uses the first term of PPMP as a good approximation; i.e. p(esc) = t1
n

. Unfortunately, the
low frequency contexts used by PPM cause the method to “break down” (i.e. yielding p(esc) = 0

or p(esc) = 1 for Method X and positive or negative probabilities for Method Y). This can be
solved by altering the first term to be t1+α

n+β
(for small values of α and β) when break down occurs.

α = 1and β = 2 are found to be the best values in terms of compression performance [65].
Witten and Bell also define another method PPMXC which reverts to PPMC when break down
occurs. The performance is investigated using two Books, “Far from the Maddening Crowd”
and “Principle of Computer Speech“ (book1 and book2 in the Calgary corpus). PPMP and
PPMX were found to perform virtually identically, outperforming PPMA, PPMB and PPMC,
while PPMXC achieves the lowest compression ratio. It must be noted that compression ratios
achieved by PPMP are not significantly different to those achieved by PPMC.

PPMD

PPMC is considered one of the best methods for calculating escape probabilities. Howard [46]
presented a new method called PPMD which builds on the work done by Moffat [64]. PPMD
is very similar to PPMC, but achieves better results by treating new symbols more consistently.
PPMD adds 0.5, as opposed to 1, to the symbol count and the escape count, which increases the
total weight by 1 instead of 2. This may be written formally as follows:

Let ϕ be the character which follows a given context, a the size of the coding alphabet, q the
number of characters which has occurred and C the total number of times the given context has
been seen. Using PPMD, p(ϕ) is as follows:

p(ϕ) =

q
2

C
· 1
a−q c(ϕ) = 0

c(ϕ)− 1
2

C
c(ϕ) > 0

CHAPTER 2. RELATED WORK 26

Tests show improvements of between 0.01 and 0.03 bpc on Calgary corpus [46]. PPMD achieves
a one percent lower compression ratio than PPMC.

PPM* and PPMZ

In the previously mentioned PPM algorithms, the maximum context length is bounded by a fixed
constant. PPM* and PPMZ are different to their predecessors because they exploit contexts of
an unbounded length.

PPM*

PPM* uses considerably greater computational resources (both in terms of space and time) than
PPMC. In order to practically use unbounded context lengths, the model needs to be stored in
such as way that gives rapid access to predictions based on any context, eliminating the need for
an arbitrary bound to be imposed. This requires a large amount of memory. Clearly and Witten
[66] suggest using a trie structure to store the PPM model in conjunction with pointers back into
the source and a linked list of pointers to the currently active contexts. This data structure is
called a context trie. While this still uses a larger amount of memory than PPMC, it works well.
More information about context tries can be found in Section 2.1 of [66]. Because the context
length is unbounded, the selection of the model order becomes an issue. The use of the entropy
to that point as a deciding metric is not effective because different model orders are optimal on
different parts of the data source. PPM* chooses the shortest deterministic context (a context
is deterministic if it only gives one prediction) if one exists, otherwise its chooses the longest
context to estimate the probability of the next symbol. In PPM*, the use of escape characters is
very important, since it will always be frequently used because of unbounded context lengths.
In PPM*’s predecessors, escaping decays over time as new contexts occur since they have a
bounded maximum context length and hence only a finite number of contexts are possible. This
is not the case in PPM* because of the use of unbounded context lengths. PPM* results in a
5.6% improvement over PPMC and 3.7% over BWCA (to be discussed in the next section) on
Calgary corpus [66].

PPMZ

PPMZ is an improvement of PPM*. With the use of the PPM* algorithm, there is a high de-
pendence of typical data on local order. This is dealt with in PPMZ by only accepting very long

CHAPTER 2. RELATED WORK 27

deterministic context lengths. PPMZ operates as follows:

1. First search for a deterministic context

2. If one is not found or an escape occurs, local order estimation (LOE) is performed to
choose a finite-context length between 12 and 0. LOE is a scheme to decide which order
to use for each character of a file. It is based on the idea that data at different parts of the
file can be better compressed using a different optimal order (exploit the local redundancy
of the data). The best confidence measure is found to be the most probable symbol’s
probability. Essentially, LOE is "a smart decision heuristic which throws away statistics
(higher order contexts) it deems to be unreliable" [67].

3. Once this optimal order is found, ordinary PPM is performed and the higher order models
which were skipped by the LOE are then updated [67].

In PPMZ, the unbounded length contexts are stored by using a series of linked lists and a hash of
order-12 context indexes. The order-12 index contains a pointer into the actual data file so that the
remaining (unbounded) characters can be matched. This context index also contains a minimum
match length. The current context must match this length. If an escape is coded (i.e. no match has
been found) then a new order-12 context index is created for the current unbounded context. The
minimum match length is set to the current match length plus one and the failed context is also
updated. This means that the contexts are never coded from again unless a subsequent context
matches enough characters to distinguish between the two and also forces all unbounded-length
contexts to be deterministic since the current context must match this length to be considered.
As in PPM*, the coding of escapes is very important. Bloom [67] states that escape probabilities
are overestimated by traditional PPM. Special care is taken with the coding of escapes in PPMZ
in that a secondary model is used to estimate the frequency of escape characters. This technique
is called Secondary Escape Estimation (SEE). It makes the escape estimation process adaptive.
Ordinary PPMC escape counting is performed (number of novel characters in a context) and
order 0, 1 and 2 escape contexts are constructed to send statistics which will be used for SEE.
The escape probability is then calculated as a weighted sum from these statistics. The use of SEE
causes an improvement in the compression ratio achieved.

PPMII

Despite the improvements in compression ratio, PPM-based algorithms have not largely been
adopted. Applications tend to use programs which use Lempel-Ziv-based algorithms or algo-

CHAPTER 2. RELATED WORK 28

rithms which use Burrows-Wheeler transform. This is largely due to the high computational
complexity created by the use of large contexts, local order estimation, etc. PPMII is an improve-
ment to the PPMD algorithm, which boasts a complexity which is comparable to the widespread
compression schemes based on LZ77, LZ78 and BWT algorithms. PPM models are essentially
based on the assumption that the longer the initial part of the context the more similarity there
is between their conditional distribution. One of the main problems with PPM-based algorithms
(besides the escape probabilities) is statistics insufficiency in the higher order contexts [48]. A
number of different techniques such as LOE have been defined, however they require a lot of
resources.

In PPM, lower-order contexts gather useful information which can be passed on to higher-order
contexts which are essentially augmented lower-order contexts. The terms parent and child con-
texts are used to describe these two contexts. Given a string “This is a strin”. The order 1 context
“n” is the parent context of the order 2 context “in" (and the order 2 context is the child of the
order 1 context), which is the parent context of the order 3 context “rin” (with the order 3 context
being the child of the order 2 context) and so forth. PPMII takes advantage of the similarity of
distribution functions in the parent and child contexts by using "inherited frequencies". This is
done by setting the initial generalised symbol frequency in the child context with regard to in-
formation about this symbol gathered in the parent context. Reference to the parent context only
occurs at the addition of a new symbol to the child context which is rare and makes a fast solution
possible. The rare use of the parent context again also enables the model to adapt quickly and
makes it a fast alternative to LOE for local order estimation. This technique is known as Infor-
mation Inheritance. It achieves a 8 percent lower compression ratio than PPMD. Information
Inheritance also requires a modification to the update exclusion methodology. In the original
method, parent contexts are used only for coding new symbols not seen in child contexts. For In-
formation Inheritance to be effective, however, the frequency of the parent needs to be increased
for the calculation of the initial generalised symbol frequency to be accurate should it have any
more children. The solution is to increase the frequency of the parent but with weight of 1

2
. If a

symbol is processed in the longest context there is no need to update the parent since the statis-
tics can be considered stable with a small escape probability. By not updating these statistics,
execution time is also increased by up to 10 percent. As in PPM*, PPMII uses a variation of SEE
to improve escape estimations and hence improve the compression ratio achieved.

CHAPTER 2. RELATED WORK 29

Summary

Prediction by Partial Matching is a finite-context statistical modeling technique that can be
viewed as blending together several fixed-order context models to predict the next character
in the input sequence [68]. Bounded and Unbounded contexts have been investigated and tech-
niques such as LOE and SEE. PPMII achieves the lowest compression ratio using Information
Inheritance and SEE. It is also the most efficient out of the PPM family; exhibiting complexity
comparable to the Lempel-Ziv family of algorithms and the algorithms which use the Burrows-
Wheeler transform (to be discussed in the next section).

2.3.3 Burrows and Wheeler Compression Algorithm

The Burrows and Wheeler Compression Algorithm (BWCA) was developed by Michael Burrows
and David Wheeler during their time at the Digital Systems Research Center. Since the 1994
paper [38] in which the BWCA and the Burrows and Wheeler transform was introduced, much
work has been done on this technique. This section introduces the BWCA, explains the main
step in this algorithm (The Burrows-Wheeler Transform) and discusses the similarities in this
approach to PPM and further improvements which have since been made to the BWCA.

The BWCA consists of 4 parts:

1. The Burrows-Wheeler Transform (BWT)

2. Recency Ranking Technique (Usually Move-to-front coding known as the General Struc-
tural Transformation [69])

3. Zero Run Length Encoding

4. Entropy coding

In some variations, Run length encoding (RLE) is included before the BWT to improve the speed
of the BWCA. Unlike other compression programs (such as the Lempel-Ziv-based compression
algorithms and the PPM compression algorithms) which process the input data sequentially,
the Burrows and Wheeler compression algorithms process the input data in blocks. The main
innovation of the BWCA is the BWT, which reorders the characters contained in the block into
an order which is easily compressed with simple algorithms such as MTF. It is for this reason
that the BWCA is often referred to as a block-sorting algorithm. The choice of MTF coding

CHAPTER 2. RELATED WORK 30

is important. While contexts are grouped together, there is no per-context statistical information
kept and so the encoder must rapidly adapt from the distribution of one context to the distribution
of another. The MTF coder has this rapidly adapting quality [70] and is hence used.

The function of RLE to support the probability estimation by decreasing the amount of long
runs of a single symbol which cause a high probability for that symbol. In the BWCA, RLE is
used to take advantage of the long run of zeros formed by the MTF coding. The BWCA uses a
variant of RLE introduced by David Wheeler, known as Zero Run length encoding (RLE0). In
RLE0, the length of the run is represented using two characters (0 and 1). The value of the other
characters are increased by 1, so that 0 and 1 can be used to encode a run of zeros. Fenwick [71]
notes that RLE0 is the most effective run length scheme for the BWCA. More information can be
found in Wheeler [72], Fenwick [71], Deorowicz [73] and the mathematical investigations into
the properties of the BWCA conducted by Balkenhol et al [74, 75].

Once run-length encoding has been completed, the data is compressed using entropy encoders,
such as Huffman encoding or Arithmetic encoding, which assign shorter codes to more fre-
quently occurring symbols.

Burrows Wheeler Transform

The Burrows-Wheeler Transform is the central part of the BWCA. It is a reversible transform
discovered by David Wheeler in 1983 while he was working for AT&T Bell Laboratories, but this
remained unpublished until 1994. It essentially computes a permutation of the input sequence in
which symbols with a similar context are grouped closely together so that the input sequence can
then be easily compressed using simple compression methods such as MTF.

The transformation operates as follows:

1. On a block consisting of n characters, it performs n rotations (cyclic shifts) on the blocks

2. It then sorts the n rotations lexicographically and extracts the last character from each of
the rotations, taking note of the number of the block which the contains the original string

3. The block formed from the last character of each of the rotations is then the transformed
string. The number of the block containing the original string is used to identify the original
string in the transformed matrix.

CHAPTER 2. RELATED WORK 31

For example, consider performing the transform on the string "ALPHABETA". This is a block
consisting of nine characters. The matrix of the n rotations is as follows:

A L P H A B E T A

L P H A B E T A A

P H A B E T A A L

H A B E T A A L P

A B E T A A L P H

B E T A A L P H A

E T A A L P H A B

T A A L P H A B E

A A L P H A B E T

These cyclic rotations are sorted lexicographically. This produces the following matrix:

A A L P H A B E T

A B E T A A L P H

A L P H A B E T A

B E T A A L P H A

E T A A L P H A B

H A B E T A A L P

L P H A B E T A A

P H A B E T A A L

T A A L P H A B E

The transformed string is “THAABPALE" and the third rotation contains the original string
“ALPHABETA”.

This transformation is reversible by adding the input block as the first column of a matrix (origi-
nally empty) and performing a lexicographical sort until the matrix (then of size n by n) used to
get the input string is reconstructed. Two methods may be used to identify the original block in
this matrix. One is adding an end-of-block character to the block before performing the transfor-
mations, while the other is to retain the index of the original string in the matrix [38], as in the
example shown.

The example string “ALPHABETA" is obtained from "THAABPALE" as follows:

CHAPTER 2. RELATED WORK 32

T

H

A

A

B

P

A

L

E

→

A

A

A

B

E

H

L

P

T

→

T A

H A

A A

A B

B E

P H

A L

L P

E T

→

A A

A B

A L

B E

E T

H A

L P

P H

T A

→

T A A

H A B

A A L

A B E

B E T

P H A

A L P

L P H

E T A

→

A A L

A B E

A L P

B E T

E T A

H A B

L P H

P H A

T A A

→ · · ·

→

T A A L P H A B E

H A B E T A A L P

A A L P H A B E T

A B E T A A L P H

B E T A A L P H A

P H A B E T A A L

A L P H A B E T A

L P H A B E T A A

E T A A L P H A B

→

A A L P H A B E T

A B E T A A L P H

A L P H A B E T A

B E T A A L P H A

E T A A L P H A B

H A B E T A A L P

L P H A B E T A A

P H A B E T A A L

T A A L P H A B E

The original string ("ALPHABETA") can be found in the third row of the matrix.

The transformed block compresses well because the localized region of a string is likely to con-
tain a large number of a few distinct characters. For instance, notice the proximity of the charac-
ter “A” in “THAABPALE” in comparison to “ALPHABETA”. Consider any word, such as “the”.
When the rotations are sorted, all the rotations beginning with “he” will be sorted together, which
will cause the “t”s to be in close proximity to each other. The P (c), where c is a character, at a
given point in the string is very high if c occurs near that point in the string [38]. This is the exact
property which is required for effective compression by a MTF coder as it encodes an instance
of a character by a count of distinct characters seen since the previous occurrence.

Similarities to other programs

Although the BWT may seem to be completely different for other compression techniques,
Clearly et al. [66] noted that the effect of this transformation is rather similar to PPM. The

CHAPTER 2. RELATED WORK 33

Figure 2.2: Suffix tree for the string "abcabc$"

BWT transformation can be performed by sorting the suffixes of the input string through the cre-
ation a suffix tree and performing a walk in lexicographical order to recover the sorted suffixes
[38]. The "$" character is included to denote the end of the string. For the string "abcabc", the
transform is performed on "abcabc$" as follows:

a b c a b c $

b c a b c $ a

c a b c $ a b

a b c $ a b c

b c $ a b c a

c $ a b c a b

$ a b c a b c

→

$ a b c a b c

a b c $ a b c

a b c a b c $

b c $ a b c a

b c a b c $ a

c $ a b c a b

c a b c $ a b

This gives a transformed string of "cc$aabb".

The suffix tree for the string "abcabc" is shown in Figure 2.2. A lexicographical walk visits the
leaf nodes in the following order: 7, 4, 1, 5, 2, 6, 3. The characters preceding the characters at
these positions are "c", "c", "$", "a", "a", "b", "b". These characters form the string "cc$aabb".
When the inverse BWT is applied to this string, it results in "$abcabc". Since the "$" character is
included to denote the end of the string, the string rotation with "$" at the end is the transformed
string. This would be "abcabc$".

Figure 2.3 (a) shows the complete context tree, which is used by PPM to calculate statistics (Note
that optimisations to PPM such as count-scaling and only adding nodes when certain criteria are
met have been omitted in this tree). The counts of the characters are indicated in each node.
Figure 2.3 (b) shows the context tree with compressed paths. Paths which consists of only single-
child nodes are compressed into a single node by traversing the path and adding each single-child

CHAPTER 2. RELATED WORK 34

(a) Complete Context Tree (b) Context Tree with compressed paths

Figure 2.3: Context Trees for string "abcabc$"

node to its parent node. This produces compressed paths. Note that this technique produces a
structure identical to the suffix tree for the string "abcabc$". This result is also observed by
Larsson [76], who suggests that the suffix tree incorporates exactly the structure of a context tree
[76]. In PPM, however, it is the next character being predicted, not the character preceding the
context (which is the case with the BWT). The BWT also omits the counts, which correlates
to discarding a lot of structural and statistical information about the suffix tree before starting
the move-to-front coding [77]. This is the essential difference between the BWT and PPM. The
BWT is also not adaptive, but block-based [66]. Both PPM and BWCA predict symbols based
on context (either provided by a suffix or a prefix) and both algorithms can be described in terms
of trees [77].

Improvements

Since the first presentation of the BWCA by Burrows and Wheeler [38], there have been a num-
ber of developments and performance optimisations by numerous authors. Due to the large
amount of developments, the scope of the improvements presented in this section is limited to
the performance optimisations and improvements which are used in the bzip2 compression pro-
gram (for more details see [78]) or are of interest for preprocessing. However, other work will

CHAPTER 2. RELATED WORK 35

be mentioned - albeit without detail - for reference and completeness.

"The most important factor in compression speed is the time taken to sort the rotations of the
input block" [38]. Burrows and Wheeler [38] use a quick-sort to generate the sorted list of suf-
fixes for the BWT. The sorting process is slow for files which contain long runs of identical
symbols. Fenwick [79, 80] proposes the use of a word-orientated sort and the use of run-length
encoding for runs longer than six to improve the speed of sorting. David Wheeler’s implemen-
tation ("bred") [72] uses a different approach where the strings are split into groups according
to the first letter, after which these groups are sorted with a quick-sort routine starting from the
smallest to the largest group. This is also known as a forward radix sort [81]. Fenwick [71, 82]
notes that this technique produces "impressive speeds". Further improvements in speed are made
by Sadakane [83], who combines the techniques from Karp et al. [84], Bentley and Sedgewick
[85], Anderson and Nillson [81] and Manber and Myers [86]. This technique requires more
memory than Bentley and Sedgewick [85] (whose fast sorting algorithm blends a quick-sort and
a radix sort); however, it is much faster. Based on these techniques, Seward developed the fast
suffix sorting algorithms "copy" and "cache" which are used in bzip2 (these are variants of Bent-
ley and Sedgewick’s algorithm [85]). bzip2, however, does fall back to Sadakane’s technique
if there are too many deep comparisons (for example, comparisons between rotations such as
aaaaaaab and aaaaaaba or rotations of strings, such as abcabc, where one of the rotations is the
original string) [87]. Balkenhol [74, 75], Kurtz and Balkenhol [88], Itoh and Tanaka [89], Kao
[90] and Mazini and Ferragina [91] present other techniques which can be used to improve the
speed of sorting. bzip2 uses the "mergedTL" method for decompression which is defined by
Seward [92]. It is 67 percent faster than the original presented by Burrows and Wheeler [38].
Seward also shows that less memory can be used in exchange for an increased decompression
time. bzip2 uses less memory in exchange for an increased decompression time when the -s

flag is specified.

Schindler [93] presents an interesting alternative to the BWT which is between 2 and 30 times
faster than the BWT, but produces higher compression ratios. This is done by sorting only limited
contexts, rather than unlimited contexts, to increase the speed. A difference only arises between
the two if no difference is found once the context limit is reached. When this occurs, BWT sorts
on deeper contexts, while Schindler’s transform sorts on the position in the original file.

Since the BWCA consists of sorting the rotations lexicographically, modifying the ordering pro-
vides an interesting way to improve the compression ratio achieved by BWCA. Chapin [70]
performs experiments to determine which characters are "close" to each other in order to group
characters such that changes in context are not so dramatic. Chapin shows that grouping vow-

CHAPTER 2. RELATED WORK 36

els together and punctuation together results in a lower compression ratio than using the ASCII
ordering. In contrast, grouping lower and uppercase letters yields a higher compression ratio
than ASCII ordering [70]. This makes the possibility of a preprocessor for bzip2 (For further
discussion on this matter, refer to Section 2.5).

bzip2 uses RLE before the BWT to increase the speed of sorting. There are mixed thoughts
among the research community about using RLE before the BWT. Fenwick [71] uses RLE to
eliminate long runs, decreasing the length of the sequence on which the BWT gets performed
and hence improving the sorting time. This results in a reduced sorting time but an increase in
compression ratio of approximately 0.1 percent. Balkenhol and Kurtz suggest only using RLE
if the run is less than 70 percent of the string [74]. Deorowicz [73], meanwhile, recommends
that RLE should not be used before the BWT since it causes a loss of some of the information of
the context in which the symbols occur. Abel [69] also recommends not using RLE before the
BWT since there are sorting algorithms which sort the runs of symbols practically in linear time.
These methods result in higher compression times, but lower compression ratios than bzip2.

Further improvements have also been made by altering the MTF transform and using different
forms of entropy encoding. Schindler [93] presents an altered form of the MTF coder where
elements are not moved to the front of the list. Balkenhol and Shtarkov [75] presents MTF-1
and Balkenhol et al. [74] present MTF-2 which move elements to the second position of the list
and only elements in second position of the front of the list. Other techniques such as Inversion
Frequencies [94, 95], Weighted Frequency Count [73, 96] and Distance Coding (a technique by
Edgar Binder originally presented in a news group, but explained by Deorowicz [96]) can be used
in place of the MTF to exploit the recency that results from the use of the BWT. Good summaries
of these improvements are provided by Abel [69] and Deorowicz [96].

Different forms of Entropy coding can be used to improve the compression performance. bzip2
uses a modified form of Huffman coding. Arithmetic coding can also be used to give a lower
compression ratio. Earlier versions of bzip2 used Arithmetic coding; however, since it is a
patented method, Huffman coding is now used. Shannon Coders and Structured Coding models
have also been explored by Fenwick [71]. Hirchberg and LeLewer [97] also present a method
of coding based on Huffman coding. The modified version of Huffman coding used in bzip2 is
similar to the one presented by Hirschberg and LeLewer [97].

bzip2 shows a 3.06 percent improvement in compression ratio from the original by Burrow and
Wheeler [38]. Other improvements mentioned in this section provide up to 5.7 percent improve-
ments from the results achieved by bzip2. The text preprocessing methods presented in Section

CHAPTER 2. RELATED WORK 37

2.5 reveal an improvement of up to 20 percent [77] using simple reversible transformations.

2.3.4 Statistical compressors

Since the advent of PPM, statistical compressors have been explored. These compressors pro-
duce low compression ratios, but are much slower than the Lempel-Ziv based programs and are
often slower than PPMII as well. The main areas which have been explored in the following
section are Dynamic Markov Compression (DMC) and Neural Networks.

Dynamic Markov Compression

DMC relies on a weak assumption that the stream of bits can be generated by a discrete-parameter
Markov model. Ziv and Lempel [58, 59] and Cleary and Witten [54] also make a similar assump-
tion in that they assume that the data source can be modeled using a Markov model.

DMC is rather similar to PPM. As in PPM, DMC uses a Markov model for predicting the proba-
bility and Arithmetic encoding for encoding. PPM predicts the next character (byte), while DMC
predicts the next bit in the file. This makes DMC well-suited for files with a non-homogeneous
nature. It also adapts far quicker than PPM since it is not biased towards byte-orientated data
[43]. DMC, however, is more resource-intensive than PPM and produces higher compression
ratios. It has therefore not been widely implemented. PAQ8 includes DMC as one of its models
for prediction [98].

Neural Networks

Neural networks excel in complex pattern recognition, which makes them a good option for
developing a model for text compression. Typical compression algorithms such as Lempel-
Ziv, PPM and BWCA are based on simple n-gram models (i.e. they exploit the non-uniform
distribution of text sequences found in most data). Neural networks are able to exploit other
patterns in the text. Schmidhuber [99], Long [47] and Mahoney [100] have all conducted research
on using neural networks to create models for compression.

Offline and Online variants of neural networks can be used. In an online variant, the neural
network would learn from the text which is being compressed, while in an offline variant, the
network would be trained and hard-coded into the compressor and decompressor. In an online

CHAPTER 2. RELATED WORK 38

variant one would not need to transmit the modified weights if both the compressor and de-
compressor start with the same initial conditions and use the same learning algorithm [99]. The
disadvantage of a offline method is that it cannot adapt to specific trends within the text file which
it is compressing (making it language specific) while the disadvantage with the online method
is that it is more computationally expensive. Schmidhuber [99] shows an offline method which
uses a three-layer neural network trained using back-propagation to compress German text. This
neural network is pre-trained using forty articles from a German newspaper (Muchner Merker).
Test sets from the same newspaper and another German newspaper, the Frankenpost, are tested.
As expected, the Frankenpost revealed higher compression ratio. This method does however
prove to be very computationally expensive (being 1000 times slower than other compression
methods). Schmidhuber [99] also tests an online method. This method is slower than the offline
method, but shows a significant improvement in the compression ratio. Long [47] uses alphabet
re-representation followed by a four-layer feed-forward back-propagation neural network with a
sigmoidal activation function to predict the probability of a symbol given a context. This prob-
ability is used by an arithmetic coder as in PPM. This technique produces lower compression
ratios than PPMC or the method presented by Schmidhuber [99] using a context size of 10.
However, for lower context sizes, PPMC achieves a lower compression ratio. Mahoney [100]
uses a two-layer neural network. This is much faster than the other neural network compressors
and produces a lower compression ratio than them. This technique also uses similar amounts of
memory to PPM based compressors and shows similar compression and decompression times,
but achieves slightly higher compression ratios. Neural networks are used to combine the models
in PAQ8 [101].

2.3.5 Context-Mixing Algorithms

In statistical compression algorithms, a model of the data is used to estimate the probability of
the character after or before the given context. These techniques result in a number of different
models which can be used to represent the data. Combining models is an effective procedure used
in machine-learning to improve the modelling of a data source. Context-mixing data compression
algorithms use this technique and combine the results from a number of data compression models
to improve the compression ratio achieved. Since context-mixing requires that each model is
performed and then combined into a single statistic, context-mixing algorithms are much slower
than other statistical compression algorithms such as Neural Networks, PPM, DMC and BWCA.
The following section serves to explain the PAQ context mixing algorithms.

CHAPTER 2. RELATED WORK 39

PAQ

PAQ is a family of context mixing compression algorithms developed initially by Matthew Ma-
honey and enhanced by a number of authors detailed on the PAQ Website maintained by Matthew
Mahoney [98]. In the PAQ family of algorithms, the next bit in the data stream is predicted in-
dependently by a large number of models. The models’ predictions are outputted in the form of
a probability and a confidence for that probability. These models are combined using a neural
network or weighted average and the data source is then arithmetically encoded.

PAQ1, developed by Mahoney, uses a weighted average of five different model, which include:

1. a bland model with 0 or 1 being equally likely

2. a set of order-1 through 8 non-stationary n-gram models

3. a string matching model for n-grams longer than 8

4. a non-stationary uni-gram, bi-gram and word model for English text (with a word being
up to 8 letters)

5. a positional context model for data with fixed records

PAQ2 adds a secondary symbol estimation technique which uses a table of values based on
previous estimation errors to determine an improved probability based on the output from the
context mixer. PAQ3 in turn provides small improvements to this technique. All the versions of
PAQ up until PAQ4 use fixed weights. PAQ4 mixes models using adaptive weights rather than
fixed weights. PAQ5 includes six new models for analog data in data sources containing audio
and images. It also includes word models for text. PAQ6 adds non-stationary models to PAQ5.
This results in an improved compression ratio. From this point in the development of the PAQ
family, many different authors produced variations which included extra models and speed op-
timizations. One such variation was released by Alexander Ratushnyak (PAQAR). It includes a
number of extra models and SSEs for each mixer at the expense of far greater memory utilisa-
tion (3.34 times greater than PAQ6). Another variation, PAsQDa, was released by Przemyslaw
Skibinski, which combines the text preprocessor, WRT (described in Section 2.5) with the PAQ6
program [98, 102]. PAQ7 is a complete re-write of PAQ6 which includes several items from the
PAQAR and PAsQDa. It also includes models for bmp, tiff and jpeg files. PAQ8, meanwhile,
provides a few more improvements from PAQ7 (including the DMC model as one of the models).

CHAPTER 2. RELATED WORK 40

PAQ8 uses a neural network to combine a large number of models [98, 101]. It also includes an
x86 executable model as well as preprocessors for executables and jpeg files [101]. The latest
development at the time of writing (PAQ808) achieves the lowest compression ratio on six of the
ten of the compression tests conducted by the Maximum Compression Benchmarking Website.
It is rated as the top compression program overall in terms of compression ratio [26]. Malcolm
Taylor’s compression algorithm PWCM (PAQ Weighted Context Mixing), which forms the ba-
sis of his commercial program WinRK [103], achieves the second lowest average compression
ratio in tests performed by Maximum Compression Benchmarking Website [26]. PWCM is also
based on the context-mixing techniques used by PAQ family of algorithms. A member of the
PAQ family has held the Calgary Corpus Compression challenge [104] since January 2004 and
the Hutter Prize [105] since its inception. These are both compression challenges to achieve the
lowest compression ratio. They are performed on the Calgary Corpus and 100MB of Wikipedia
data respectively.

2.4 Word-based Compression Algorithms

"If text compression used units larger than single characters they could take advantage of longer
range correlations and perhaps achieve better compression" [106]. Using word-based models
instead of character-based models (i.e. a single element is known as a word and not a character)
has been shown to be a successful method of improving the compression achieved by compres-
sion algorithms. This section therefore investigates word-based compression and discusses the
advantages and disadvantages of these methods.

Bentley et al. [56] presents a word-based compression scheme which uses a word-based MTF
scheme and compares it to word-based Huffman encoding and byte-level Huffman (excluding the
size of the Huffman tree). For the word-based compressors, the text stream is divided into two
sets of words. The first set of words consists of the longest sequence of alphanumeric characters,
while the second set of words consists of the longest sequence of non-alphanumeric characters.
This means that the decoder and encoder both alternate between the two sets of words. The
position in the list for the MTF method is encoded using a Huffman code, which requires two
passes over that data (as do both byte level Huffman and word based Huffman). The word-based
techniques achieve on average 78.6 percent lower compression ratios than byte-level Huffman.
The 256 element MTF cache method achieves an average compression ratio which is 0.5 percent
lower than the compression ratio achieved by the word-based Huffman method.

CHAPTER 2. RELATED WORK 41

Alistair Moffat [107] describes a word-based compression scheme which uses Arithmetic en-
coding instead of the Huffman encoding. Moffat also uses Arithmetic encoding combined with
a variable-ordered word-based Markov models instead of MTF to provide further improvement.
ZeroWord is a non-MTF scheme which uses the word frequencies as the basis for Arithmetic cod-
ing. As expected, it achieves a lower compression ratio than the zero order character compressor
using Arithmetic encoding (described by Witten et al. [53]). It also achieves a lower compres-
sion ratio than the 256 element MTF cache method described by Bentley et al. [56]. Moffat
[107] also describes a word-level variation of the PPM scheme. FirstWord and SecondWord use
first-order and second-order Markov models respectively as their basis for Arithmetic encoding.
Escape characters (as in PPM) are used to move between contexts. These both achieve lower
compression ratios than their character-based counterparts (On average seen percent lower). The
word-based methods, however, do use considerably more memory space than the equivalent
character-based methods.

In word-based schemes, it is necessary to use a two-pass scheme or an adaptive scheme that
dynamically expands the dictionary as new words are encountered. Horspool [106] introduces
a word-based LZW. The character-based LZW compression algorithm initialises its dictionary
with each character in the alphabet. Horspool’s word-based LZW, however, does not initialise
with the alphabet but rather builds the dictionary adaptively by using escape characters when
a new word is encountered. This word-based LZW achieves an average of 9.63 percent lower
compression ratio than the compress program (which uses a character-based LZW). Horspool
[106] also tests a word-based compressor using a first-order Markov model, a word-based com-
pressor using adaptive Huffman coding and a word-based compressor using Arithmetic Coding
with a State-Based Context Model based on five parts of speech: Article; Noun; Adjective; Verb;
and Other. This technique requires that the vocabulary is specified together with their parts of
speech and can only be used for natural language. This advanced technique achieves an average
compression ratio which is six percent lower than the average compression ratio achieved by the
word-based LZW.

Another word-based LZW compression algorithm, WLZW, is introduced by Dvorsky et al.
[108]. Unlike the previous methods, WLZW uses a single data structure for the dictionary -
not one for alphanumeric and another for non-alphanumeric - with a restriction on the lengths of
words and non-words. WLZW, unlike the word-based LZW presented by Horspool [106], uses
two passes through the data. In the first phase of WLZW, a lexical analysis is performed whereby
the words and non-words are determined and an alphabet is formed. In the second phase, com-
pression is performed using the standard LZW algorithm and the alphabet determined in the first

CHAPTER 2. RELATED WORK 42

phase [109, 110].

Isal et al. [111, 112] and Moffat and Isal [113] have developed a word-based BWCA. In their
implementations they use de Moura’s spaceless-words approach [114]. In this method, a single
dictionary is used containing both words and non-words. Any non-words which are a single
space between two words are omitted. The main issue in creating a word based BWCA is the
development of a MTF coder which can operate effectively on such a large set of symbols. This is
solved by the use of splay trees. Isal uses a four step process: Parse into spaceless words, perform
block sorting, perform the MTF transform and perform entropy encoding on the result. The
generated spaceless words dictionary is compressed using bzip2 and appended to the payload.
This results in a 17.5 percent lower compression ratio than bzip2 on the entire file. Further
work on the MTF stage using a forest of trees leads to an improvement in compression ratio
of 3.5 percent. The stored dictionary can also be further compressed by eliminating common
prefixes before compressing with bzip2. While the compression ratio is lower for the word-
based BWCA, it is more than 50 percent slower than bzip2 for compression and 100 percent
slower for decompression.

In a later paper, Isal et al. [112] makes use of five different methods which involve the use of a
forest of trees to perform the MTF in the word based BWCA. Moffat and Isal [113] provides a
summary of these methods and the results using different entropy encoders. These methods do
result in lower compression ratios; however, they take at least double the amount of time taken
by the original method presented by Isal et al. [111].

2.5 Using text preprocessors to improve text compression

There are essentially two approaches to text compression: design a "text aware" compressor or
creating a text preprocessor (i.e. filter) which transforms the original input into a representation
which is more redundant for general purpose compressors [115]. Skibiniski [115] states that uni-
versal compression nowadays is reaching a plateau and as a result there is an increasing interest
towards creating specialized compression algorithms.

A number of text preprocessors have been developed to improve text compression by general
purpose compressors. These text preprocessors generally replace items located in a dictionary
with a set of characters or perform a reversible transformation that will improve the compression
ratio achieved by general purpose compressors. This section discusses the following preproces-
sors: * Encoding, LPT, RLPT, SCLPT, LIPT, StarNT, WRT and TWRT. It also elaborates on

CHAPTER 2. RELATED WORK 43

other text preprocessing methods which have been developed.

* Encoding

Robert Franceshini and Amar Mukherjee [44] developed star encoding as a method of improving
compression on text files. It is a generic, reversible transformation that can be applied to a source
text to improve an existing, or backend, algorithm’s ability to compress [116]. A dictionary of
words is created and mapped onto words in the source text for replacement. This dictionary
(termed the cryptic dictionary) is then kept separate from the compressed file [117].

Franceschini [44] presents two approaches for generating the dictionary. The first approach finds
the unique words for replacement by looking for unique subsequences within each word and
replacing the other "unnecessary" characters with *s. The second approach uses the frequency
of the words in the source text to determine the word used for replacement. The words are sorted
into descending order according to frequency, then assigned letters followed by *s, i.e. entries
1 to 52 in the sorted dictionary of length i get assigned a single letter followed by i − 1 *s,
entries 53 to 2757 of length i get assigned a two-letter combination followed by i − 2 *s, etc.
With both methods, the length of the word is maintained and the amount of *s is maximised.
This compression method combined with a standard compression algorithm typically achieves
between 5 percent and 20 percent improvement in compression ratio on English text files [118]
using an electronic English dictionary which contains around 60 000 words (1.1 MB). Gains
for PPM and DMC are found to be insignificant [117] and an average gain of only 1.6 percent
is achieved on bzip2. This method also destroys the natural contextual statistics of letters and
bi-grams in the English language which are exploited by most compression algorithms [116].

LIPT, LPT, RLPT and SCLPT

The short comings of *-encoding lead to further developments. The run-length encoding in
bzip2 replaces the long sequences of * characters by shorter sequence, meaning that the * char-
acters do not get assigned short codes as intended. The second stage of bzip2 also relies on the
observation that a character sequence in the input file can be used to help predict the character
preceding it. This property holds for the English language, but not for * encoded files because *s
don’t provide enough context to make a reasonable prediction. To deal with these short comings,
the Length Preserving Transform (LPT) was developed. In this transform, the first character is
a * and the last three characters identify the words. For words of more than four characters, a

CHAPTER 2. RELATED WORK 44

suffix of "...nopqrstuvw" is used instead of *s. This produces a higher gain on bzip2. As men-
tioned in Section 2.3.3, the context information used in BWT is actually the reverse of PPM.
PPM predicts the character which follows a given context, while BWT predicts the character
which occurs before the given context. The Reverse Length Preserving Transform (RLPT) was
therefore developed to improve the compression ratio for PPM. The filler string used for LPT is
reversed [116] i.e. the prefix from "yxwvutsrqpon..." is used to fill the gap for words of more
than four characters.

Star Encoding, LPT and RLPT all preserve length information, which results in a file which
is the same size before and after preprocessing. The length information can be discarded to
improve the compression ratio as long as the unique mapping information is preserved. The
Shortened-Context Length-Preserving Transform (SCLPT) reduces the filler characters to the
shortest unique string. This leads to a smaller transformation dictionary and in addition a lower
compression ratio than the other methods [116].

Length Index Preserving Transform (LIPT) is a further improvement on these techniques [119,
120]. The first letter after the * represents the length followed by the offset in the dictionary
as before. Using the LIPT preprocessor results in a lower compression ratio using the BWCA
than the improvements by Arnavut [95], Balkenhol et al. [74] and Chapin [121]. Using the
LIPT preprocessor with PPM results in a lower compression ratio than improvements by Effros
[122] and Sadakane et al. [123]. It also results in a 13.44 percent lower compression ratio than
word-based Huffman.

StarNT

Star New Transform (StarNT) was developed using the same techniques as LIPT. Sun et al. [124]
identifies that the length of 82% of English words is greater than three. This transform therefore
sets out to recode English words with a representation of no more than three symbols while
maintaining context which can then be exploited by the back-end compressor. The resulting
transform, StarNT, is remarkably similar to LIPT, however it uses a star to denote a word that
is not in the dictionary instead of using a star to denote the beginning of a codeword for a word
that is in the dictionary. This reduces the size of the transformed file, which results in an im-
provement in compression ratio. To improve performance, ternary search trees are used to store
the dictionary. Using StarNT results in an improvement in compression time and compression
ratio in comparison to LIPT. The average transform encoding and decoding times for StarNT are
23.7 and 15.1 percent lower than LIPT and the improvement in compression ratios for StarNT

CHAPTER 2. RELATED WORK 45

are 6.65 percent higher than LIPT on average [124].

Other Text Preprocessing Techniques

There are other specific properties of textual data which compression programs and the pre-
processors presented so far do not exploit. These include: a large amount of zero-frequency
characters; numerous new line characters; commonly used bi-grams (two-letter combinations
e.g. ea) and trigrams (three-letter combinations e.g. ing); common phrases; and capitalisation, .

Teahan and Clearly [125, 126, 127] encode special bi-grams called di-grams which represent a
single sound such as ’ng’ with a single character to improve the entropy of English. Teahan [126]
also looks at using function words (which are separated into parts of speech such as: articles,
prepositions, verbs, etc. and irregular forms) and a scheme which uses a dictionary of frequently
used words in the English language.

Grabowski [128] uses text preprocessing techniques to improve the compression ratio achieved
on the BWCA, introducing three new techniques: Capital Conversion; space stuffing; and EOL
coding.

Capitalised words lead to two different contexts which are essentially identical. In Capital con-
version, an escape character is used to replace the capital letter of a word if only its first letter
is capitalised. This technique increases context dependencies and similarities between words
which can be exploited by compression programs.

Rapid context changes can be costly in the BWCA due to the high MTF ranks which would be
used for coding. Line breaks create rapid context changes within a source file. Space stuffing
and EOL coding are methods which can be used to counter this problem. In Space stuffing,
a space symbol is placed at the beginning of each line in order to change the context which
follows the end of line symbol to one space instead of a variety of symbols. EOL coding is
another technique to deal with line breaks. This technique replaces the EOL symbol with a space
and encodes a reference to its location using the number of spaces since the last EOL symbol
(Grabowski attributes this idea to Taylor). Grabowski [128] also investigates alphabetical re-
ordering. Tests performed on Calgary and Canterbury corpus show that these techniques result
in an average improvement in compression ratio of 3 percent.

Isal and Moffat [129] and Kruse and Mukherjee [77, 117] also use preprocessing techniques
to improve the compression ratio of the BWCA. Isal and Moffat [129] propose prepending a
parsing transformation to BWT which replaces n-grams and words with unused characters. Kruse

CHAPTER 2. RELATED WORK 46

and Mukherjee [124] inturn proposes the use of dictionary encoding and replacing the 96 most
frequently-used bi-grams with unused characters.

Abel and Teahan [130] highlights a number of different methods to exploit textual properties,
including: capital letter conversion; end of line (EOL) coding; word replacement; phrase re-
placement; and alphabetical reordering. These methods use reversible transformations which are
performed before compression and after decompression. In phrase substitution an augmented al-
phabet is used to replace di-grams, trigrams and four-character phrases as in Teahan [126]. Abel
and Teahan [130] also investigate using word substitution. Using these techniques results in an
improvement of between two percent and nine percent improvement in the compression ratio by
bzip2, gzip and ppmd on ten files from the Calgary Corpus and two files from the Canterbury
Corpus [130].

WRT and TWRT

The previous sections have shown that a popular way to increase text compression is to replace
words with references to a text dictionary.

The following techniques are Incorporated into WRT (Word Replacing Transformation): StarNT
(using a new dictionary which contains 80 000 word from Aspell, longer codes, and a modified
dictionary ordering), capital conversion, dictionary mapping (using extra characters), separate
mapping, q-gram replacement (using capitals since extra codes already used) and EOL coding.

Lempel-Ziv based compressors are significantly different to compressors which use the BWCA
and PPM for compression. With Lempel-Ziv based compressors, the input data is parsed into
a stream of matching sequences and single characters, while in BWCA and PPM characters are
predicted based on a given context. The text preprocessors can be adapted for LZ77 based com-
pressors by reducing the number of single characters to encode, decreasing the offset of matching
sequences and decreasing the length of the matching sequence (hence virtually increasing the size
of the LZ77 sliding window). This can be done by using a spaceless-words model, but not using
q-gram replacement. Using capitalisation flags after a period, quotation or exclamations mark if
they are not capitalised can also be used to reduce the number of capital conversion flags. No
spaces are put after capitalisation flags to improve the results of Lempel-Ziv based compression
programs. Tests performed on the Calgary Corpus and Canterbury corpus using PAQ6, PPMon-
str, UHBC (large BWT), bzip2 and gzip result in improvements of between two percent and
six percent over the results achieved when using the same compression programs in combination
with StarNT [115].

CHAPTER 2. RELATED WORK 47

Dictionary-based preprocessing results in the most significant improvement in compression per-
formance [131]. Since some files may contain two different data types, such as programming
commands and English comments, the use of two static dictionaries optimised for programming
commands and the English language would be useful. Two-level Word Replacing Transfor-
mation (TWRT) uses two dictionaries which are dynamically selected before the preprocessing
begins. To do this, TWRT uses a two-pass process: Dictionary detection is performed in the first
pass and WRT using the selected dictionaries is performed in the second pass. The first level
(small dictionaries) are specific to some kind of data (the programming language when com-
pressing code), while the second level dictionaries (large dictionaries) are specific for natural
languages (such as English, Russian or French. This dictionary would be used for references
when compressing code).

The best dictionaries are detected by taking the first 250 words of the dictionaries and counting
their occurrences in the file. The small dictionary is not used if the frequency of words from
the large dictionary is more than five time greater than the frequency of words from the small
dictionary. Dictionary detection can be performed faster by dividing the file into five parts using
only the first few KB instead of the entire file. The dictionary detection phase can also be used
to decide whether other steps such as using a binary data filter, surrounding words with spaces
and EOL coding should be used. This step may also be used to detect record-based files that
can use record preprocessing to improve the compression ratio. TWRT is 1.7 percent slower
than WRT, but produces a 1.7 percent lower compression ratio on the Calgary corpus. The dic-
tionary detection also makes it multilingual, unlike WRT which uses a single language-specific
dictionary.

Summary

Text preprocessors provide a substantial improvement in the compression ratio achieved by com-
pression programs. The steps taken by text preprocessors to improve the compression ratio are
simple transformations, such as the replacement of text with a single character or the replacement
of words with new words. With the exception of TWRT, where language and dictionaries to be
used are determined, the text preprocessors are rather simple. However, they still provide an
improvement in compression ratio which is comparable to that achieved by the word-based com-
pressors which use substantially more resources to obtain their compression ratios. When the
preprocessors reduce the size of the file to be compressed, the compression programs take less
time and use less memory utilisation for compression. The main advantage of using preproces-

CHAPTER 2. RELATED WORK 48

sors is that they can be customised for a particular file type and used with standard compression
programs.

2.6 Improving Log Compression

Log files consist of a number of lines of data separated by end of line characters. Each of these
lines consist of a number of tokens, separated by spaces, which contain information that has been
recorded by a program about its activity and errors that have occurred. These lines often exhibit
a common format and common elements such as timestamps. More than one line is often logged
about a single event which leads to a relationship between the lines. There are several patterns
which are very frequent in log files. These include: IP addresses; timestamps; and URLs. Log
files also contain a number of unused characters which can be utilised for cheap substitution
of frequent sequences. Hatonen [132] notes that the original data set of tens of thousands of
rows can often be represented by merely a couple of identified patterns and the exceptions not
matching these patterns.

The compression of logs is, at present, performed by programs such as: logrotate; rotatelogs;
httplog; IIS Log Archiver; Web Log Miser and SafeLog. These programs use general purpose
compression algorithms such as DEFLATE [133], which do not exploit the redundancy that is
specific to log files. Not much work has been done until recently on log file specific compression.

The next three sections investigate the improvements in log compression made by LogPack [133],
the improvement in web log compression by Grabowski [134] and the compression of logs on
the IBM Blue Gene/L [135].

2.6.1 LogPack

LogPack is a log compressor presented by Skibinski and Swacha [133], which performs a num-
ber of transformations on the log file before compressing with gzip, LZMA or PPM. gzip is
included as an online compression algorithm, while others (LZMA and PPM) are included for
highly effective offline compression.

LogPack consist of five different transforms. The first three transforms exploit the resemblance
between neighboring lines (addressing local redundancy), while the other two exploit the global
repetitiveness of tokens and token formats.

CHAPTER 2. RELATED WORK 49

The first transform (which is the core transform) finds matches in the previous line. The sequence
of matching characters is replaced by a single value (128+ l) denoting the length of the sequence
(l). If this value is encountered, it is simply preceded by an escape flag (127) to avoid confusion.
This transform is the simplest, fastest and least effective out of three. The second transform builds
on this transform. Unlike the first transform, it uses a block of lines and encodes the index of the
line used at the beginning of the line. The third transform uses a similar approach. It stores a
block of recent lines which begin with different tokens. This is the most effective out of the three
transforms. The fourth transform replaces words which repeat frequently throughout the entire
log. After transform three is performed, the output is parsed into words and the frequency of
each word is calculated. Words which occur more than 64 times are then included in a dictionary
(limited to 2MB). The fifth transform converts numbers, dates, times and IP addresses to their
binary equivalents. It is stored using a flag which denotes the type followed by encoded data.
These transforms do not exploit all the redundancy of log files; however, when used with gzip,
LZMA and PPM compression algorithms, they provide up to 36 percent improvement in the
compression ratio achieved on the test corpus.

2.6.2 Web log compression

Grabowski and Deorowicz [134] observe that fields which are located adjacently are similar is
consecutive lines of a log file (This is a property of web log files and not all log files). Since com-
pressing each field separately is a known way of increasing the compression ratio in databases,
they apply this technique to log files. Timestamps are encoded using the difference from the pre-
vious timestamp (This is encoded using one byte. A value of 255 serves as an escape for larger
values, after which a four byte difference is used) and IP addresses are encoded using four bytes.
In any other field, common prefixes and suffixes are identified and a dictionary is formed. This
dictionary is then encoded using an order-1 model and arithmetic encoding. An MTF transform
is also used to exploit the recency effect which is typical in many of the fields due to consecutive
log entries from same events. Grabowzki and Deorowicz [134] also note that fields are often
correlated and share identical values. In the web log format, the access request and size are cor-
related and the IP address and User agent are also correlated. By removing this redundancy, the
compression ratio is further improved.

In tests performed using gzip, 7zip, bzip2 and ppmd, this transform resulted in improvements
in compression ratio of up to 65 percent (This improvement is 75 percent greater than the im-
provement by LogPack).

CHAPTER 2. RELATED WORK 50

2.6.3 IBM Blue Gene/L Log Files

IBM Blue Gene/L is a large scale cluster designed to meet the computational requirements and
data handling demands of large scientific and industrial applications. This supercomputer is
capable of running hundreds of parallel jobs and transferring many gigabytes of data per second.
It also produces a large amount of systems logs. Balakrishnan and Sahoo [135] propose the use
of data compression to aid the storage and transfer of this large amount of data.

A number of trends can be observed in the blue gene/l system logs. These include that fact that:
most columns in adjacent records tend to be the same; record ids are ascending integers in se-
quence; and the time stamps tend to increase. In addition, the log files exhibit a temporal locality
of adjacent records as well as a spacial locality of the devices creating them. Balakrishnan and
Sahoo [135] use a simple preprocessing step which compares the record with the previous record
and encodes this difference. This preprocessing step produces a small stand-alone compression
ratio; however, in combination with generic compression utilities, such as bzip2, gzip and 7zip,
it shows a good improvement in compression ratio. It produces 28.3 percent lower compression
ratios and 43.4 percent lower compression times. The data-set used was 103 days of log data
collected from a 64 node IBM Blue Gene/L installation (This data-set is 195MB uncompressed).

2.7 Compression Program used in this Thesis

Program Ratio Time Memory

compress 0.40513 1.5 -

pkzip 0.32859 1.5 -

gzip 0.32392 2 -

bzip2 0.26367 5 -

7zip 0.26167 20 -

ppmd 0.24088 5.5 -

WinRK 0.18657 1326 700

Program Ratio Time Memory

PAQ1 0.22813 68.1 48

PAQ2 0.22357 93.1 48

PAQ3Na 0.21791 147.2 80

PAQ4b 0.21394 139 84

PAQ607fb 0.20209 556.4 206

PAQ7 0.19470 740 525

PAQ8L 0.18935 1872 837

Table 2.2: Results for Compression Tests on Calgary Corpus performed by Mahoney [98]

Table 2.2 shows the compression ratio and times for compression programs on the Calgary corpus
obtained from tests performed by Mahoney [98]. This table shows very low compression ratios

CHAPTER 2. RELATED WORK 51

achieved by programs such as WinRK and the PAQ compression programs. These programs,
however, are very slow and have hence been excluded from the tests in this thesis. WinRK
an PAQ are between 3.42 and 93.6 times slower than 7zip; however, they do achieve a lower
compression ratio. The compression ratios achieved, however, are only 25 percent lower than
the compression ratio achieved by ppmd. It is for this reason that this thesis does not test the PAQ
compression algorithms. The smallest file in the test corpus is 14.8 times larger than the Calgary
Corpus. This would thus lead to incredibly slow compression times as well as significantly large
amounts of memory usage.

This thesis limits the scope of compression programs to ones which are available on many differ-
ent platforms, have a console based implementation (for testing purposes) and are widely used.
Previous work presented on using preprocessors to improve log compression (see Section 2.6)
used ppmd, 7zip, gzip and bzip2 for testing purposes.

The following compression programs have been used for tests in this thesis: ppmd, 7zip, gzip,
lzop, arj, zip, and bzip2. These programs are a representative sample of compression pro-
grams. ppmd uses the PPMII algorithm, bzip2 uses the BWCA, lzop is a fast compressor, 7zip
achieves low compression ratios using the LZMA algorithm (which is an LZ77-based compressor
using Markov models) and gzip, zip and arj are popular LZ77 based compressors. The follow-
ing section will thus give an overview of these compression programs and shows the algorithms
which they use to perform compression. Technically, ppmd is the only statistical compressor.
7zip and bzip2 both use hybrids of sequential and statistical methods. From this point onwards,
however they will be referred to as statistical compressors because of their statistical properties,
low compression ratio and slow speeds.

2.7.1 ppmd

ppmd is a compression program written by Dmitry Shkarin that uses the PPMII algorithm and
arithmetic encoding (refer to Section 2.3.2 for more details on PPM). Shkarin was interested
in the speed and performance improvements of the abstract PPM models when he wrote this
program, therefore it is not tuned for a particular data type. It achieves low compression ratios on
text files, but comparatively higher compression ratios for non-homogeneous files (executables)
and noisy analog data (sounds, pictures etc.) [35].

CHAPTER 2. RELATED WORK 52

2.7.2 gzip

gzip is a commonly-used compression program which uses the DEFLATE algorithm described
in Section 2.3.1. The gzip file format is defined by Deutsch in Request for Comments (RFC)
1952 [32]. It contains a ten byte header which includes a gzip file identifier (0x1f8b), the
compression method, a modification time and some flags to identify further header fields which
follow after the initial ten byte header. This is followed by further header fields, the compressed
payload and an eight byte footer containing a cyclic redundancy check (CRC) value using the
CRC-32 algorithm and the original (uncompressed) payload size.

2.7.3 7zip

7zip is an archive format designed by Igor Pavlov. It has an open architecture, so it can sup-
port any new compression algorithms. Current algorithms which can be used with this format
include: PPMD; Bzip; DEFLATE and Lempel-Ziv Markov Chain Algorithm (LZMA). LZMA
is the default compression method of the 7z format. It has a high compression ratio, a variable
dictionary size (up to 1GB) and requires little memory for decompression [136]. LZMA is thus
essentially an improvement on the LZ77 algorithm backed by a range encoder. It supports sev-
eral variants of hash chains, binary trees and Patricia tries (radix tree) and may be coupled with
specific preprocessors designed for executable files such as Branch Call Jump (BCJ) and Branch
Call Jump Version 2 (BCJ2) [37].

2.7.4 lzop

Lempel-Ziv-Oberhumer (LZO) is a data compression library written in C. It offers fast com-
pression and very fast decompression with low memory usage. It was designed with speed in
mind. The naming convention for the various algorithms is in the format LZOxx-N, where N is the
compression level. 1-9 indicates fast, standard levels which use 64KB memory, level 99 offers
better compression and is still reasonably fast, but uses more memory (256KB), while level 999
is supposed to achieve nearly optimal compression at the cost of slow compression times and
greater memory usage. LZO is a block compression algorithm based on LZ78. It uses a sliding
dictionary, compressing a block of data into matches and runs of non-matching literals [34].

CHAPTER 2. RELATED WORK 53

2.7.5 arj

arj (Archiver Robert Jung) is a compression program, similar to PKZIP, which uses a proprietary
compression format covered in part by US patent 5140321 [137]. Its attractive feature is being
able to add, delete and/or modify files in a multi-volume archive. It specifies five methods: 0
(stored); and 1 (lowest ratio) to 4 (fastest speed). arj uses a LZ77 based algorithm with hashing
functions [137]. More detailed description of the header fields may be found in the arj technical
information [36].

2.7.6 zip

zip is a simple archive format in which each file is compressed separately. Each of the files in
the archive may use a variety of compression methods. These include [33]:

• Shrinking (a variant of LZW)

• Reducing (compressing repeated byte sequences and applying probability-based encoding)

• Imploding (compressing repeated byte sequences with a sliding window, then compressing
the result using Shannon-Fano coding)

• DEFLATE (LZ77 sliding windows of up to 32KB)

• Enhanced DEFLATE (LZ77 sliding windows of up to 64KB)

• PKWARE Data Compression Library Imploding

• BWCA

zip is one of the most popular and widely used archive format. There are many different pro-
grams available for creating zip archives. InfoZip is used in the tests conducted for this thesis
since it is the standard zip program included with many different linux distributions.

2.7.7 bzip2

bzip2 is an implementation of the BWCA developed by Julian Seward (based on the work per-
formed by Fenwick [82] and Seward [87, 92]). The BWCA used by bzip2 consists of run length
encoding, the BWT and MTF coding, followed by RLE0 and entropy encoding using Huffman
coding.

CHAPTER 2. RELATED WORK 54

2.8 Summary

This chapter has presented a brief discussion on the state-of-the-art for text based data compres-
sion. It described the compression programs which are used in this thesis and presented their
algorithms. It explained why the PAQ and WinRK compressors are not included among the
testing programs and showed their results on the Calgary Corpus (which is the standard corpus
for evaluating compression programs). This chapter has showed that preprocessors produce an
improvement in compression ratio which is comparable to the improvement by enhancements
to the compression programs. Section 2.6 revealed that the redundancy present in log files can
be exploited to provide up to 65 percent improvement in compression ratio as well as detailing
the recent works in log compression. The next chapter investigates the performance of the seven
compression programs on a corpus of log files.

Chapter 3

Data Compression

Data compression is an effective method for reducing the quantity of data. Previous work, de-
scribed in the previous chapter, showed that the use of data compression on English Text files
lead to a reduction in filesize of between 80 and 90 percent. The maximum compression bench-
marking site [49] shows the standard compression programs which this chapter is evaluating
reduce the size of a 20MB log file by between 91.82 percent and 97.18 percent.

This chapter investigates using data compression to reduce the size of log files and seeks to
evaluate the resources used and the performance of each compression algorithms. It first presents
the methodology used for conducting tests. This is followed by a presentation and comparison
of the results for the various compression programs. This chapter concludes by selecting the best
compression programs for the four different scenarios described in Section 1.3.

3.1 Testing Methodology

As mentioned in Section 1.3 and described further in Section 2.7, the compression programs
investigated in this thesis are 7zip, bzip2, lzop, gzip, zip, arj and ppmd. In order to provide
effective analysis of these compression programs, the compression time, decompression time,
memory usage and the compression ratio for each level of the compression program need to be
recorded.

This section presents the methodology used to obtain these results. It describes the corpus used,
the test used to determine the compression times, decompression times and compression ratios
and the test used to determine the memory utilisation. The testing process is split into two tests

55

CHAPTER 3. DATA COMPRESSION 56

so that the process of monitoring the memory will not effect the compression and decompression
times which are recorded in the first test.

3.1.1 Test Corpus

The seven compression programs are tested on the a test corpus which consists of six text log
files (a generic syslog, a squid access log, an apache access log, a postfix mail log, a kernel
messages log and a ftp log) and a binary LibPCap data file.

Log Filename Description Filesize (bytes)

all.log Generic syslog logs 62033795

access.log Squid access logs 228045444

httpd-access.log Apache web server access logs 88824626

maillog Postfix mail server logs 48213167

messages Kernel messages 46824482

xferlog FTP logs 44236972

darknet-200508.cap LibPCap Packet Capture 122867860

Table 3.1: Corpus of different log files used for testing data compression programs

Table 3.1 shows the filename, a description and the filesize of this files which are contained in
the corpus used in this chapter for testing the data compression programs.

3.1.2 Compression and Decompression Tests

Since the compression and decompression times vary slightly between different runs, each file
needs to be compressed and decompressed a number of times and an average obtained. The
variation in time is due to factors which are out of the control of this project. The results in this
chapter are obtained by calculating the average over five iterations. The testing procedure for
each file in the corpus is as follows:

1. Compress the file five times using each compression program and record the time results
for all five times

2. Decompress the obtained compressed files five times using the relevant decompressor and
record the time results for all five iterations

CHAPTER 3. DATA COMPRESSION 57

3. Calculate the averages for each compression level of each program

4. Calculate the compression ratios for each compression level of each program

5. Record these results for further analysis

This process results in a number of files containing the original five samples for each compression
level of each compression program and a file containing the average results for each compression
level and the compression ratio achieved. The times are recorded using time which is available
in most unix-based operating systems. This testing process is automated using Perl scripts which
may be found in Appendix E.1.1.

3.1.3 Memory Utilisation tests

The amount of memory utilised is obtained by performing another iteration of compression and
decompression on each file and monitoring how much memory is allocated to the process. The
peak memory utilisation is the same for each of the five iterations of compression and decom-
pression, so only a single iteration is necessary to obtain the results. The testing procedures is as
follows:

1. Start the memory-testing script which records the memory-usage information for the pro-
cess using top (a resource monitor which is available in most unix-based operating sys-
tems) and outputs it to a file

2. Compress and decompress each file with each compression program

3. Split the file containing the memory usage information and obtain the memory-usage statis-
tics for each compression program (top records the command used to launch a process.
This command contains the compression program and compression level used and can
hence be used to split the file)

This process is automated using Perl scripts (which may be found in Appendix E.1.2). The
memory usage statistics recorded are a combination of the resident memory and shared memory
used by the compression program.

CHAPTER 3. DATA COMPRESSION 58

3.2 Results and Analysis

Test results are obtained for each file on the corpus. In order to analyse the large amount of
results generated (65 compression level - compression program pairs for seven files) and make
conclusions about the performance on the corpus, 2 metrics are used: The average (or sum); and
the weighted average (or weighted sum).

The weighted average for a result on the corpus is calculated by giving larger files a lower weight-
ing to minimise the effect of file size on the average (since larger files obtain a higher value). The
weighting which is used is the average on the corpus divided by the file size. The weighted aver-
age is described formally as follows:

Consider a corpus C, containing n files. Let xi be the result on the i-th file in the corpus (i =

1, 2, 3, · · · n). Let si be the size of the i-th file in the corpus (i = 1, 2, 3, · · · n). Then the
weighted average for the result is calculated as follows:

∑n
i=1

(Pn
j=1 sj

n

si
× xi

)
n

The next four sections will analyse the compression ratio, compression and decompression times,
transfer times and memory utilisation on the test corpus. These results are obtained using the
methodology presented in the previous section. Note that a summary of the statistical methods
used can be found in Appendix A and the definitions of the terms such as compression ratio,
compression time amd decompression time may be found in Section 2.1.4.

3.2.1 Compression Ratio

File Entropy (bpc)

all.log 5.41494

access.log 5.35091

httpd-access.log 5.54863

maillog 5.44533

messages 4.86430

xferlog 5.32017

darknet-200508.cap 6.24628

Table 3.2: Shannon Entropy (in bpc) for each log file in the corpus

CHAPTER 3. DATA COMPRESSION 59

Table 3.2 lists the Shannon Entropy for each of the files in the corpus. It is calculated by using
the probability of a single character in the file as its probability of that character occurring (i.e.
the character-based entropy).

Algorithm Correlation Coefficient

ppmd 0.89139

bzip2 0.88456

gzip 0.80520

zip 0.80520

arj 0.79545

7zip 0.77966

lzop 0.64346
Overall 0.81903

Table 3.3: Pearson correlation coefficient for Average Compression Ratio vs Shannon Entropy

Table 3.3 shows the Pearson correlation coefficient between the Shannon entropy listed in Ta-
ble 3.2 and the average compression ratio for each compression program. These results show
that character-based entropy is a good indication of compression performance. The overall cor-
relation coefficient (0.81903) indicates a strong linear relationship between these two variables
which means that as the entropy increases, so too does the average compression ratio. All the
compression programs with the exception of lzop show a strong positive correlation. lzop is
a fast compression program with nine compression levels. The first six compression levels are
designed to be fast but achieve a high compression ratio, while the other three compression levels
are designed to achieve a lower compression ratio with slower compression and decompression
times. If lzop is split into 2 categories, lzop(1) for the first six compression levels and lzop(2)

for the last three compression levels, then the resulting correlation coefficients are 0.58133 and
0.76197 for lzop(1) and lzop(2) respectively. lzop(2) therefore exhibits a strong positive
correlation, while lzop(1) exhibits a weak positive correlation. This skews the results for lzop.
Character-based entropy is therefore a good indication of the compression ratio for all levels of
the compression programs except the first six levels of lzop.

Table 3.4 shows the rankings of the compression programs for the lowest average compression
ratio on the corpus and the overall average compression ratio on the corpus. These results show
the statistical compressors (ppmd, 7zip and bzip2) achieving both the lowest compression ratios
and the lowest average compression ratios. ppmd achieves the lowest compression ratio, while

CHAPTER 3. DATA COMPRESSION 60

Lowest Average
ppmd 1 (0.05824) 1 (0.07099)
7zip 2 (0.06418) 2 (0.07414)
bzip2 3 (0.07627) 3 (0.08150)
gzip 4 (0.10148) 4 (0.11185)
zip 5 (0.10148) 5 (0.11185)
arj 6 (0.10345) 6 (0.11791)

lzop 7 (0.12857) 7 (0.15417)

Table 3.4: Compression Ratio Ranking on entire corpus

bzip2 achieves the highest compression ratio out of the three statistical compressors. zip and
gzip achieve the lowest compression ratio out of the Lempel-Ziv-based compressors. gzip and
zip both use the DEFLATE compression algorithm, which is a combination of LZ77 algorithm
and Huffman encoding. gzip achieves a lower average compression ratio than zip (0.000002
lower) since it has slightly smaller headers. gzip and zip achieve a 0.6 percent lower average
compression ratio than arj. lzop achieves the highest average compression ratio out of all the
programs. The average compressed size when using lzop is more than double that of ppmd

(which achieves the lowest compression ratio) and a third larger than arj (which achieves the
second-largest compressed size out of all the programs). Detailed information of the performance
of the different compression levels is contained in Appendix E.3.

The corpus contains a LibPCap data file (which is a binary data file) as well as six text log
files. Many compression programs perform well on text (and hence on the log files), but achieve
comparatively poor results on binary data.

Lowest Average

ppmd 1 (0.04401) 1 (0.05724)

7zip 2 (0.05674) 2 (0.06718)

bzip2 3 (0.06254) 3 (0.06826)

gzip 4 (0.09027) 4 (0.10145)

zip 5 (0.09027) 5 (0.10145)

arj 6 (0.09221) 6 (0.10911)

lzop 7 (0.11873) 7 (0.14676)

Table 3.5: Compression Ratio Ranking on corpus without LibPCap data file

Table 3.5 shows the rankings of the compression algorithms on the corpus without the LibPCap

CHAPTER 3. DATA COMPRESSION 61

data file. The results all show an improvement from the compression ratios shown earlier in
Table 3.4. This is to be expected since the average compression ratio on LibPCap data file is
0.16573, while the average on the other text log files in the corpus is 0.09278. There is, however,
no change in the rankings of the compression programs.

Average LibPCap
Difference StdDev Mean Ratio

lzop(1) 0.04362 0.00059 0.20403

7zip 0.04744 0.00664 0.12425

lzop 0.05189 0.01277 0.19864

lzop(2) 0.06843 0.00105 0.18788

zip 0.07277 0.00692 0.17422

gzip 0.07277 0.00692 0.17422

arj 0.07557 0.00610 0.18268

bzip2 0.09266 0.00374 0.16092

ppmd 0.09625 0.01119 0.15349

ppmd* 0.09890 0.00391 0.14944

Table 3.6: Difference between the compression ratio achieved on the corpus and the compression
ratio achieved on the LibPCap File

Table 3.6 shows the average difference in the compression ratio achieved by each program in
the corpus and the compression ratio achieved by each program on the LibPCap data file. Since
lzop and ppmd show a high standard deviation for their results, their results have been split
into categories to reduce the standard deviation. The first six compression levels of lzop are
designed to be very fast and yield a higher compression ratio than the last three levels (which
are designed to be much slower and achieve a lower compression ratio). lzop has thus been
split into two categories: lzop(1) for the first six compression levels; and lzop(2) for the
last three compression levels. Both these categories show a lower standard deviation. The first
compression level of ppmd (order 2) achieves an average compression ratio of 0.15958, which
is 0.06162 higher than the average for the second compression level (order 3 - 0.09796) and
0.09491 higher than the average over compression levels 2-15 (0.06467). ppmd* excludes this
outlier and shows both a lower standard deviation and a lower average than ppmd.

The first six levels of lzop (lzop(1)) return the lowest difference, but also the highest average
compression ratio for LibPCap data files. This shows how the first six levels of lzop do not

CHAPTER 3. DATA COMPRESSION 62

exploit the redundancy contained in the files as effectively as the other programs, which results
in it returning similar results for the binary LibPCap data file and the other text log files. 7zip

achieves the best results out of the statistical-based compressors. It achieves the second-lowest
average difference and the lowest average compression ratio (3.4 percent lower than ppmd) on the
LibPCap data file. lzop(1) also achieves the lowest average difference, however, the average
compression ratio for lzop(1) is 0.20403, which is nearly twice the ratio achieved by 7zip

(0.11596).

gzip and zip achieve approximately average results for the difference, The average difference
over all the compression programs is 0.07295. gzip and zip both achieve an average difference
of 0.07277. The average compression ratio achieved by zip and gzip, however, is above the
overall average of 0.16573.

arj achieves below average results for the difference. As with the results for the overall corpus,
it achieves the highest compression ratio out of the LZ77-based compression algorithms. It
does, however, achieve a lower difference between the LibPCap files and text log files than ppmd

and bzip2. These two programs achieve poor results for the LibPCap file in comparison to the
other programs relative to their results on the other files in the corpus. On text-based log files,
bzip2 achieves a compression ratio which is 3.3 percent lower than the ratio achieved by zip

and gzip, whereas the compression ratio achieved on the LibPCap data file is only 1.3 percent
lower than the ratio achieved by zip and gzip. ppmd achieves the highest difference between
the compression ratio for the LibPCap data file and the text-based log files, emphasised by the
fact that when the poor results for order 2 are removed (ppmd*), the difference increases. The
reason for the marked difference in performance is that ppmd is not designed for any data types
other than text. It was designed as a program to test the effectiveness of the PPMII algorithm and
includes no optimisations for binary data [35]. Both bzip2 and ppmd, however, do achieve low
compression ratios on the LibPCap data file (even though their performance is not as impressive
as on the text based log files).

Summary

In all the compression programs (with the exception of lzop(1), where compression levels 2-5
are constant and compression level 1 achieves a lower ratio), there is, on average, a decrease in
compression ratio as the compression level increases (as compression method increases for 7zip
and as compression level decreases for arj). In all the compression programs (with the exception
of ppmd) the highest compression level (lowest for arj) achieves the lowest compression ratio.

CHAPTER 3. DATA COMPRESSION 63

The highest compression ratio is achieved by the lowest compression levels (highest compres-
sion level for arj) for all compression programs except lzop(1) where compression levels 2-5
achieve the highest compression ratio. bzip2, lzop(2), arj, gzip, zip and ppmd (up to the first
local minimum) all display a logarithmic decrease in compression ratio as the compression level
increases (decreases for arj).

There is not much change in the compression program’s rankings for compression ratio on the
binary LibPCap file. 7zip achieves the lowest ranking on the LibPCap file. The rest of the
rankings remain the same. Closer inspection reveals that bzip2 and ppmd have a higher difference
between the compression ratio for the LibPCap file and the text based log files than the other
compression programs; however, this has little effect on the compression rank.

Program Level Rank

ppmd 9 1

7zip 10 12

bzip2 9 20

gzip 9 34

zip 9 35

arj 1 40

lzop(2) 9 53

lzop(1) 1 60

(a) Lowest Rank

Program Average Rank

ppmd 13

7zip 19.2

bzip2 25.89

gzip 43.78

zip 44.78

arj 47.25

lzop(2) 54.67

lzop(1) 62.5

(b) Average Rank

Table 3.7: Rankings of compression ratios achieved by each compression programs

The averages obtained for each compression level of each compression program (65 averages in
total) are ranked according to the compression ratio achieved. Table 3.7 (a) show a summary of
the lowest rank by each compression program as well as the compression level which achieves
it. Table 3.7 (b), meanwhile, shows the average rank for each of the compression programs.
These results show that the statistical compressors achieve the lowest compression ratios, lzop
achieves the highest compression ratios and arj achieves the highest compression ratio out of
the LZ77-based compression programs.

To achieve lower compression ratios, more time is required for compression. The next section in-
vestigates the times taken to achieve these compression ratios. It shows the average compression,
decompression and total times for each of the compression programs on the test corpus.

CHAPTER 3. DATA COMPRESSION 64

3.2.2 Compression and Decompression Times

Larger files take longer to compress and decompress than smaller files. The test corpus contains
seven files which range from 44MB to 228MB (with an average of 82MB). In order to not
allow poor performance on larger files to skew the results, a weighted average is used where
the times are scaled according to their size in relation to the average size. Interestingly, this
weighted average exhibits a Pearson correlation coefficient of 0.99870 with the average and a
Chi-squared goodness-of-fit test conducted produces a p-value of 0.96 which means that the null
hypothesis fails to be rejected and, therefore, the weighted average and average exhibits the same
distribution. It is, therefore, inconsequential as to which metric is used. This section uses the
weighted average metric. Whenever a compression or decompression time is referred to in this
section, it is referring to the weighted average calculated on the test corpus.

lzop zip gzip arj 7zip ppmd bzip2

Comp 1 (0.76) 3 (1.74) 2 (1.67) 4 (2.81) 6 (17.96) 5 (11.98) 7 (30.7)

L Decomp 2 (1.33) 1 (1.06) 3 (1.56) 4 (1.76) 5 (2.53) 7 (14.84) 6 (5.67)

O Total 1 (2.24) 2 (2.89) 3 (3.24) 4 (5.08) 5 (20.79) 6 (27.3) 7 (36.37)

Avg 1.33 2 2.67 4 5.33 6 6.67

Comp 4 (20.27) 2 (7.67) 1 (7.02) 3 (8.18) 7 (111.9) 5 (20.46) 6 (72.24)

H Decomp 3 (2.25) 1 (1.17) 2 (2.21) 4 (2.28) 5 (2.92) 7 (23.09) 6 (9.4)

I Total 4 (21.61) 2 (8.73) 1 (8.58) 3 (10) 7 (114.57) 5 (43.55) 6 (81.64)

Avg 3.67 1.67 1.33 3.33 6.33 5.67 6

Comp 4 (6.13) 2 (4.02) 1 (3.65) 3 (5.08) 7 (58.23) 5 (16.38) 6 (53.03)

A Decomp 2 (1.66) 1 (1.11) 3 (1.74) 4 (1.93) 5 (2.68) 7 (19.02) 6 (8.2)

V Total 4 (7.79) 1 (5.12) 2 (5.39) 3 (7.01) 7 (71.19) 5 (35.39) 6 (61.23)

Avg 3.33 1.33 2 3.33 6.33 5.67 6

Table 3.8: Ranking of compression time, decompression time and total time (weighed average
in seconds) for all compression programs

Table 3.8 shows the rankings for the lowest, highest and average times for each compression
program. The weighted average (in seconds) is contained in brackets after the ranking. In this
table, figures for the compression times, decompression times and total times are shown. The
average ranking is also shown for each compression program. As mentioned, lzop favours speed
over compression ratio. The results show lzop producing impressive speeds. lzop achieves the

CHAPTER 3. DATA COMPRESSION 65

lowest compression time for all files in the corpus and the lowest decompression time for five
out of the seven files in the corpus. The decompression time for the squid access log causes
both the weighted average and the average to be higher for lzop than zip. This is because lzop

takes double the time that zip takes to decompress the squid access log file. lzop achieves the
lowest total time for all files in the corpus except the squid access log. The lzop program has
two classes of compression levels. The first six compression levels (1-6) - lzop(1) - are fast and
achieve a high compression ratio, while the last three compression levels (7-9) - lzop(2) - are
slower but achieve a lower compression ratio. This causes lzop to achieve a higher average rank
than zip and gzip.

Lowest Time Highest Time Average Time

Comp Decomp Total Comp Decomp Total Comp Decomp Total

lzop(1) 0.76 1.41 2.24 1.02 2.25 3.27 0.85 1.81 2.65

lzop(2) 10.89 1.33 12.23 20.27 1.42 21.61 16.68 1.36 18.05

Table 3.9: Compression Time, Decompression Time and Total Time (all in seconds) for the two
classes of lzop compression levels

Table 3.9 shows the lowest, highest and average times for the two different classes of lzop

compression levels. It reveals how lzop(1) achieves lower times than zip and gzip and that
gzip and zip achieve faster times than lzop(2), despite it achieving lower compression ratios,
gzip achieves a higher rank than zip for all compression times and total times, but achieves
a lower rank for decompression times. The statistical compressors - 7zip, bzip2 and ppmd -
achieve slow compression and decompression times. ppmd achieves the highest decompression
times, but achieves lower compression times than 7zip and bzip2. Detailed information on the
performance of the different compression levels of the seven compression programs is contained
in Appendix E.3.

Summary

The results presented in this section generally confirm that, in order to achieve a lower com-
pression ratio, an increased amount of time is required. zip, gzip and arj show an exponential
increase in compression times in order to obtain a logarithmic increase in compression ratio. For
lzop, zip, gzip, arj and bzip2, the compression level which achieves the highest compression
ratio achieves the fastest time and the compression level which achieves the lowest compression

CHAPTER 3. DATA COMPRESSION 66

ratio achieves the slowest compression time. 7zip levels 8-10 have slower compression times
than bzip2, causing bzip2 to achieve a better average overall. However for all compression
levels of bzip2, there exists at least two compression levels of 7zip which achieve faster com-
pression times and lower compression ratios than bzip2 (This is detailed in Appendix E.3). Five
out of the seven programs exhibit approximately constant decompression times. ppmd and bzip2

are the only compression programs tested which do not exhibit a constant decompression time.
Both show a linear increase and ppmd achieves slower decompression speeds than compression
speeds.

Program Level Comp Decomp Total Average

lzop(1) 4 1 12 1 4.67

zip 1 9 5 10 8

gzip 1 7 21 4 10.67

arj 4 14 29 17 20

lzop(2) 7 30 10 29 23

7zip 1 29 40 30 33

ppmd 1 29 51 34 38

bzip2 1 49 42 39 43.33

Table 3.10: Ranking of lowest compression time, decompression time and total time

For each compression level of each program (65 levels in total), the average compression, de-
compression, and total times over the corpus are calculated. These are ranked from highest to
lowest. Table 3.10 shows the rank of the compression time, decompression time and total time
for the compression level which achieves the lowest total time. This table shows that the first six
levels of lzop, lzop(1), are the fastest, followed by the three LZ77-based compressors. gzip

achieves faster compression times and slower decompression times than zip and arj is the slow-
est out of the three LZ77-based compressors. The statistical compressors - bzip2, 7zip and ppmd

- achieve compression times than the LZ77-based compressors. Overall, lzop(1) achieves the
fastest times and bzip2 the slowest times.

3.2.3 Transfer Times

The transfer time for a particular compression program is the time taken to transfer the file at a
given transfer speed from one point to another with the use of compression and decompression

CHAPTER 3. DATA COMPRESSION 67

at each end. This is calculated by taking the time to transfer the compressed payload at a given
transfer speed and then adding it to the time taken to compress and decompress the original
payload. Transfer times, therefore, combine the results of compression ratio, compression time
and decompression time into a single practical metric which can help to choose a compression
program for a given scenario. This section investigates the transfer times for transfer speeds of
between 1 KBps (Kilobytes per second) and 30 000 KBps.

Figure 3.1: Lowest transfer times for all compression programs at transfer speed between 1 KBps
and 10 KBps

Figure 3.1 illustrates the lowest transfer times for the different compression programs at transfer
speeds between 1 KBps and 10 KBps. These are the speeds which are achieved by communica-
tion technologies such as GSM, Dial up Modems, DIGINET and GPRS. In this figure, the rank of
the compression programs does not change. The statistical compressors (ppmd, 7zip and bzip2)
achieve the lowest transfer times. ppmd achieves the lowest transfer times and lzop the highest,
which are more than double the transfer times achieved by ppmd. For these transfer speeds, ppmd
provides up to 93.263 percent improvement over transfer times without compression.

Figure 3.2 shows the lowest transfer times for transfer speeds between 10 KBps and 1000 KBps.
In this figure, the transfer speeds achieved by common communication technologies such as
EDGE, 3G, ADSL and HSDPA are shown for reference. The rank achieved by the programs

CHAPTER 3. DATA COMPRESSION 68

Figure 3.2: Lowest transfer times for all compression programs at transfer speed between 10
KBps and 1000 KBps

between 1 KBps and 10 KBps remains until transfer speeds of 19 KBps. ppmd achieves the lowest
transfer time until speeds of 81 KBps, at which point, 7zip becomes the fastest. It achieves
the lowest transfer time until speeds of 235 KBps. From 236 KBps, zip achieves the fastest
transfer times. From 306 KBps, the three LZ77-based compression programs achieve the first
three positions. The slower statistical compressors - ppmd, 7zip and bzip2 - achieve lower
compression ratios and higher total times but produce faster transfer times. This shows that
when slow transfer speeds are being used, higher compression ratios are more valuable than
faster speeds.

As previously mentioned, there are two classes of compression algorithms for lzop. lzop(1),
which consists of the first six compression levels, is designed to be fast and achieve a higher
compression ratio while lzop(2), which consists of the last three compression levels, achieves
lower compression ratios and slower times. lzop(2) achieves lower transfer times than lzop(1)

up until 354 KBps. lzop(1) achieves the highest transfer times up until transfer speeds of 194
KBps. Since it achieves high compression ratios, it does not produce fast transfer times for these
transfer speeds.

This graph also shows that gzip achieves a lower transfer time than zip for transfer speeds
below 18KBps. As previously noted, zip achieves a lower total time than gzip and a similar

CHAPTER 3. DATA COMPRESSION 69

compression ratio (0.000002 higher than gzip). This causes zip to achieve a lower transfer time
than gzip. arj achieves the highest transfer speed out of the LZ77-based compression programs
(this being on average, 6.21 percent higher than gzip). This is to be expected since it achieves a
higher compression ratio and higher total times than both gzip and zip.

For all transfer speeds, bzip2 is the worst performing statistical compressor. It achieves the third
fastest transfer speed up until 42 KBps. Thereafter its high total time causes it to drop below zip

and gzip. Between 42 KBps and 194 KBps, arj and lzop also become faster than bzip2. From
this point, bzip2 achieves the slowest transfer time. It achieves the highest overall average of
555.729 seconds, 15.99 percent higher than lzop, which achieves the second highest average.

(a) Lowest Transfer Times (b) Zoomed in Image

Figure 3.3: Lowest transfer times for all compression programs at transfer speed between 1000
KBps and 30000 KBps

Figure 3.3 (a) illustrates the transfer speeds achieved by the compression programs for transfer
speeds between 1001 KBps and 30 000 KBps. It also shows the transfer speed without the use of
compression (Labeled none). Figure 3.3 (b) zooms in on the transfer times between 0 and 100.
It clearly shows the improvement of lzop(1) and when the use of the LZ77-based compression
and lzop(1) no longer results in an improvement from the transfer time using no compression.
lzop(1) moves from last position (194 KBps) to producing the lowest transfer times from 9615

CHAPTER 3. DATA COMPRESSION 70

KBps. Up to this point zip produces the fastest transfer times. This illustrates how, at higher
transfer speeds, the total compression time becomes more important than the compression ratio
which it achieved. It is for this reason that the LZ77-based compression programs and lzop(1)

achieve the fastest transfer times at higher transfer speeds. As the transfer speed increases, the
use of compression provides a smaller improvement in transfer time.

Program Speed (KBps) Speed (Mbps)

lzop(1) 26567 207.55

zip 24690 192.89

gzip 20176 157.63

arj 13989 109.28

lzop(2) 5977 46.70

7zip 5902 46.11

ppmd 2612 20.41

bzip2 2163 16.90

Table 3.11: Maximum transfer speeds at which compression program shows improvement

Table 3.11 shows the maximum transfer speeds for each compression program which results in
an improvement in transfer time. On 100BaseT networks which operate at a maximum of 100
Mbps (12800 KBps), the use of LZ77-based compression programs and lzop(1) still provides
an improvement in transfer time. Using no compression, it takes 48.91 seconds to transfer the
corpus, while with lzop, zip, gzip and arj it takes 28.11, 28.71, 33.57 and 45.42 seconds re-
spectively to transfer the corpus. This means that, at this high speed, the compression ratio is low
enough to compensate for the compression and decompression times and still provide a decrease
in time. At this speed, the other compression programs take between 1.98 (lzop(2)) and 5.40
(bzip2) times longer than the use of no compression. This shows how the time taken for com-
pression and decompression by the statistical compressors can affect the transfer times at high
transfer speeds. ppmd, which achieved the lowest transfer time for 3G (11.30 times faster than
no compression and 2.04 times faster than lzop(1)), is 4.33 times slower than no compression
and 8.57 times slower than lzop(1) at 100 Mbps. This table shows that compression provides a
reduction in transfer time for transfer speeds of up to 207.55 Mbps. The other advantage of using
compression is that less bandwidth is used (due to the reduction of the payload size) and the "on
the wire" time is shorter. Detailed results of the transfer times for each compression level of the
compression programs can be found in Appendix E.3.

CHAPTER 3. DATA COMPRESSION 71

Summary

Generally, this section has shown that the compression ratio achieved is more important than the
total time for lower transfer speeds. As the transfer speed increases, the importance of the total
time increases. This means that the lower compression levels (higher in arj) of the compression
programs produce faster transfer times at higher transfer speeds, while the higher compression
levels (lower in arj) of the compression programs produce faster transfer times at lower transfer
speeds.

1.2 3.6 7 8 10 21.25

GSM 28.8K 56K 64K GPRS EDGE Average

ppmd 1 1 1 1 1 1 1

7zip 2 2 2 2 2 2 2

bzip2 3 3 3 3 3 3 3

gzip 4 4 4 4 4 5 4.17

zip 5 5 5 5 5 4 4.83

arj 6 6 6 6 6 6 6

lzop(2) 7 7 7 7 7 7 7

lzop(1) 8 8 8 8 8 8 8

none 9 9 9 9 9 9 9

Table 3.12: Ranking of transfer time for compression programs at slower connection speeds

Table 3.12 shows the ranking of the compression programs for the maximum transfer speeds
of GSM, 28.8 Kbps modem, 56 Kbps modem, 64 Kbps DIGINET, GPRS and EDGE. The last
column contains the average ranking for these transfer speeds. The table shows the statistical
compressors achieving the lowest transfer times for all these levels (and hence the lowest average
ranks), with ppmd achieving the fastest transfer time for all these transfer speeds. At such transfer
speeds, all the compression programs shows an improvement in transfer time.

Table 3.13 shows the ranking of the compression programs for the maximum transfer speeds of
3G, 512 Kbps ADSL, 1 Mbps ADSL, HSDPA and 4 Mbps ADSL. The last column contains the
average ranking for these transfer speeds. This table shows the improvement by the LZ77-based
compression programs for faster transfer speeds (zip has ranks of one and gzip has a rank of
two for 4 Mbps ADSL). 7zip becomes the fastest statistical-based compressor and the only one
in the top three for the average. The fall of ppmd can also clearly be seen for speeds greater than

CHAPTER 3. DATA COMPRESSION 72

48 64 128 230.4 512
3G 512K 1M HSDPA 4M Average

7zip 2 2 1 1 4 2
zip 3 3 2 2 1 2.2
gzip 4 4 3 3 2 3.2

ppmd 1 1 4 5 7 3.6
arj 5 5 5 4 3 4.4

lzop(2) 7 7 6 6 6 6.4
bzip2 6 6 7 8 8 7

lzop(1) 8 8 8 7 5 7.2
none 9 9 9 9 9 9

Table 3.13: Ranking of transfer time for compression programs at broadband connection speeds

1 Mbps. For 3G and 512 Kbps it has a rank of one, but for the rest achieve ranks of between four
and seven. The improvement of lzop(1) can also be seen for 4 Mbps, where it achieves a rank
of five. In summary, for all transfer speeds greater than 1Mbps, zip and gzip are better options
than the statistical compressors.

1280 6912 12800 >6912

10BaseT 802.11a/g 100BaseT Average Average

zip 1 1 2 1.33 1.5

lzop(1) 4 2 1 2.33 1.5

gzip 2 3 3 2.67 3

arj 3 4 4 3.67 4

lzop(2) 6 6 6 6 6

7zip 5 7 7 6.33 7

none 9 5 5 6.33 5

ppmd 7 8 8 7.67 8

bzip2 8 9 9 8.67 9

Table 3.14: Ranking of transfer time for compression programs at LAN and Wireless connection
speeds

Table 3.14 shows the ranking of the compression programs for the maximum transfer speeds
of 10BaseT, 802.11a/g and 100BaseT. The second-last column contains the average ranking for
these transfer speeds, while the last column contains the average for 802.11a/g and 100BaseT.
zip and lzop(1) achieve the fastest times, with lzop(1) achieving a rank of one for 100BaseT.

CHAPTER 3. DATA COMPRESSION 73

For both 802.11a/g and 100BaseT, only the LZ77-based compressors and lzop provide an im-
provement in transfer time. The transfer time without the use of compression achieves a rank of
five for these transfer speeds.

3.2.4 Memory Utilisation

When considering a compression program, it is important to consider the resources used as well
as the performance of the compression program. The previous section investigated the times
taken by the compression programs for compression and decompression. This is both a perfor-
mance and a resource issue. The memory resources used by the compression program to perform
compression is also important when picking a compression program for a given scenario. This
section will therefore investigate the memory-usage of each compression program when com-
pressing and decompressing the test corpus.

Minimum Maximum Average

gzip 0.9 0.93 0.92

lzop(1) 1.18 1.22 1.19

zip 1.28 1.3 1.29

lzop 1.18 1.55 1.31

arj 1.4 1.42 1.41

lzop(2) 1.55 1.55 1.55

bzip2 1.84 7.3 4.57

ppmd 7.95 116.69 72.91

7zip 5.14 578.09 169.89

(a) Compression

Minimum Maximum Average

gzip 0.8 0.8 0.8

lzop(1) 1.05 1.05 1.05

lzop 1.05 1.05 1.05

lzop(2) 1.05 1.05 1.05

zip 1.28 1.28 1.28

arj 1.29 1.3 1.3

bzip2 1.25 4.3 2.78

7zip 4.16 58.28 19.01

ppmd 7.94 116.83 72.94

(b) Decompression

Table 3.15: Memory utilised (in MB) by compression programs when compressing and decom-
pressing the corpus

Table 3.15 (a) shows the minimum, maximum and average memory usage by each program
for compression while Table 3.15 (b) shows the minimum, maximum and average memory-
usage by each program for decompression. The memory-usage for each compression level of
the compression programs is calculated by taking the average of the peak memory usages when
compressing or decompressing each file in the corpus using that compression level. This table
shows that the LZ77-based compression programs - zip, gzip and arj - have low memory

CHAPTER 3. DATA COMPRESSION 74

utilisation. Sections 3.2.1 and 3.2.2 noted that arj was the slowest and achieved the highest
compression ratios out of the LZ77-based compression programs. This table shows that arj also
uses the largest amount of memory out of the LZ77-based compression programs. arj, therefore,
shows the poorest performance and uses the most resources out of the LZ77-based compression
programs.

Out of all the compression programs tested, gzip uses the least memory for both compression
and decompression. It shows a maximum memory utilisation of less than 1MB. This is less than
the minimum memory utilisation for all the compression programs. zip, which achieves similar
compression ratios and faster total times, uses on average 49.42 percent more memory than gzip.

lzop(1) uses the second least amount of memory for both compression and decompression (this
being 30 percent more than gzip on average). lzop(1) and lzop(2) use the same amount of
memory for decompression, but lzop(2) uses an average of 1.55 MB, which is 30.25 percent
more than the average for lzop(1). zip and arj both use less memory than lzop(2) for com-
pression as well as achieving lower compression ratios.

The statistical compressors - 7zip, ppmd and bzip2 - use between 2.13 and 184.66 times more
memory, on average, than the rest of the compression programs. Out of the statistical compres-
sors bzip2 uses the least memory, while ppmd uses (on average) 15.95 times more memory than
bzip2 and 7zip shows the highest average memory utilisation (2.33 times the average achieved
by ppmd). All the compression programs show less memory utilisation for compression than
decompression (except ppmd).

Summary

Generally, the compression levels which achieve the lowest compression ratios are expected to
utilise the most memory.

Figure 3.4 (a) and Figure 3.4 (b) show scatter plots of the memory usage versus the compression
ratio achieved for compression and decompression respectively. The curves present in both fig-
ures are fitted using the function a e−

x
b +c and the Least Squares method to obtain the best fit. For

compression a, b and c are 0.0713394, 0.21286 and 0.0674409, and for decompression a, b and
c are 0.0911754, 1.96128 and 0.0693726. Figure 3.4 (a) and Figure 3.4 (b) both illustrate that an
increase in memory is required to achieve a lower compression ratio. This amount of memory
required to achieve a lower compression ratio grows exponentially as the compression ratios de-
creases. However, zip and gzip indicate an exception: as the compression level increases, both

CHAPTER 3. DATA COMPRESSION 75

(a) Memory usage for Compression (b) Memory Usage for Decompression

Figure 3.4: Compression Ratio versus Memory Utilisation for all compression levels of all com-
pression programs

the compression ratio and the memory-usage decreases. For bzip2, 7zip and lzop, the lowest
compression levels - which achieve the highest compression ratios - use the least memory for
compression and the highest compression levels - which achieve the lowest compression ratios -
use the most memory for compression. Compression level nine achieves the lowest compression
ratio for ppmd. It therefore does not make sense to use any compression level above nine for ppmd

Program Comp Decomp

gzip 5 5

lzop(1) 12.5 13.83

zip 20 24

arj 26.5 30.5

lzop(2) 30 14.33

bzip2 36.44 34.78

7zip 52.4 46.7

ppmd 53.13 57.07

(a) Average Rank

Program Level Rank

gzip 9 1

lzop(1) 2-6 10

zip 9 16

arj 4 25

lzop(2) 7-9 29

bzip2 1 32

7zip 1 37

ppmd 1 42

(b) Least Comp. Memory

Program Level Rank

gzip 1-9 1

lzop(1) 1-6 10

lzop(2) 7-9 10

bzip2 1 19

zip 1-9 20

arj 4 29

7zip 1 40

ppmd 1 45

(c) Least Decomp. Memory

Table 3.16: Average Rank for Memory Utilisation and Least Memory Utilisation by each com-
pression program for compression and decompression

CHAPTER 3. DATA COMPRESSION 76

since they are slower and utilise more memory to achieve a higher compression ratio.

For each compression level of each program (65 levels in total), the memory-usage for compres-
sion and decompression are ranked from highest to lowest. Table 3.16 (a) shows the average rank
of each program for compression and decompression memory usage. Tables 3.16 (b) and 3.16
(c) show the compression levels which use the least amount of memory for each program. They
also show the rank of those compression levels. The tables show that the statistical compression
programs - 7zip, ppmd and bzip2 - use more memory than the LZ77-based compressors. In
addition, they reveal that arj uses the most memory for compression and decompression out of
the LZ77-based compressors and that gzip uses the least memory out of all the programs.

3.2.5 Summary of Results

Time Memory Overall

Ratio Comp Decomp Total Average Comp Decomp Average Average

gzip 43.78 15.89 21.11 17.56 18.19 5 5 5 22.32

zip 44.78 17.67 5 15 12.56 20 24 22 26.44

lzop(1) 62.5 3.5 24.5 4.33 10.78 12.5 13.83 13.17 28.81

arj 47.25 20.75 19 21.75 20.5 26.5 30.5 28.5 32.08

lzop(2) 54.67 38.67 12.67 31.33 27.56 30 14.33 22.17 34.8

bzip2 25.89 55.67 46 54.33 52 36.44 34.78 35.61 37.83

ppmd 13 39.47 58 42.6 46.69 53.13 57.07 55.1 38.26

7zip 19.2 53 36.5 51.7 47.07 52.4 46.7 49.55 38.61

Table 3.17: Average ranks of the results for each compression program

Table 3.17 shows the average ranks of the results for each compression program. This table
is a summary of results achieved by each compression program. Overall, gzip and zip are
the most well rounded compression programs. They both achieve average compression ratios,
low compression times and low memory utilisation. The average rank for time is calculated
by taking the average of the average ranks achieved for compression time, decompression time
and total time. The average rank for memory utilisation is calculated similarly by taking the
average rank of the memory utilisation for compression and decompression. The overall average
is calculated by averaging the average rank for time, memory utilisation and compression ratio.
This table shows lzop(1) achieving a higher average rank than lzop(2). lzop(2) achieves

CHAPTER 3. DATA COMPRESSION 77

higher compression times and greater memory utilisation, so this is expected. The statistical
compressors - bzip2, 7zip and ppmd - achieve the three highest overall average ranks. They
achieve the three lowest average ranks for compression ratio; however, their slow times and high
memory utilisation causes them to achieve a high overall average rank.

3.3 Scenarios

Section 3.2 showed that each compression program has their own set of strengths and weak-
nesses. Some compression programs were fast and achieved high compression ratios (such as
lzop) while others had high compression times, slower decompression times and achieved low
compression ratios (such as 7zip). For each monitoring scenario a different compression pro-
gram is thus likely to be more appropriate. Some of the possible scenarios include:

• Filtering logs through to the central point for analysis (where latency is not important, but
there is a desire to use as little bandwidth as possible)

• Real-time monitoring (where a minimum point-to-point time is desired, using as little re-
sources (memory, time and bandwidth) as possible)

• Quick access, storing it compressed and later decompressing it for analysis (where fast
decompression is desired, but the compression time does not matter. In addition, there is a
secondary desire to use as little bandwidth as possible)

• Low system-time-usage for compression and decompression (where fast compression and
decompression times are desired and the compression ratio does not matter)

The following section investigates these scenarios and makes recommendations on which com-
pression program is most applicable to the needs of that scenario.

3.3.1 Filtering logs through to the central point for analysis

In this case, the compression and decompression times are not very important but a low com-
pression ratio is desired. This makes ppmd, 7zip and bzip2 the best options, since they achieve
positions one, two and three respectively when ranking compression levels, which in turn shows
the lowest compression ratios. Since the logs are going to be used for analysis at a central point,

CHAPTER 3. DATA COMPRESSION 78

it is also desirable to have a quick decompression time. The desired memory utilisation is not
clear and will have an effect on the choice. bzip2 is the best option if a low memory utilization
is desired; however, it achieves the slowest times and highest compression ratio out of the three
programs. 7zip and ppmd are both very memory intensive. 7zip has the fastest decompression
time and it also achieves the best results for LibPCap data (making it significantly versatile). The
best option is therefore 7zip due to its high compression ratio, fast decompression times and
versatility.

3.3.2 Real-time monitoring

For real time monitoring, a low point-to-point time is desired. zip, gzip and ppmd are therefore
the three best options, depending on the speed of the point-to-point links. ppmd uses more mem-
ory for compression and decompression than zip and gzip and in addition it does not achieve
low compression and decompression times like zip and gzip. ppmd does, however, achieve a
much lower compression ratio and superior point-to-point times for the slower links. zip pro-
duces the lowest transfer times for higher transfer speeds and is not very resource intensive. 7zip
is also an option since it achieves the fastest or second-fastest transfer speeds for lower transfer
speeds. Essentially, then, it depends on the resources available and the transfer speed of the
point-to-point link. If the transfer speed is low, then 7zip or ppmd is the best option, otherwise
zip would be the preferred choice.

3.3.3 Quick access to stored compressed information

If the compression time does not matter but quick decompression is desired, then 7zip is a very
good option. It achieves a low compression ratio, provides quick decompression, but results
in high compression times. lzop, gzip, arj, and zip all have faster decompression times but
achieve higher compression ratios than 7zip. Out of these, gzip achieves the lowest compres-
sion ratio and lzop the highest (lzop being nearly 25 percent larger (24.548) than gzip). gzip’s
compressed payload is also a third larger than 7zip, but exhibits faster compression and de-
compression times. The best choice would be zip due to the low compression ratio and fast
decompression time.

CHAPTER 3. DATA COMPRESSION 79

3.3.4 Low system time usage for compression and decompression

For quick compression and decompression without taking any regard to size, lzop would un-
doubtedly be the best choice since it exhibits both the fastest compression and decompression
times. zip and gzip also perform really well in this respect and achieve lower compression
ratios than lzop. Since fast compression and decompression is desired (i.e. low system time),
lzop would be the best choice. Should the compression ratio be taken into account, zip would
be the best option due to a lower total time than gzip.

3.4 Summary

This chapter shows data compression to be a good method for reducing the quantity of data.
It provides an improvement in point-to-point times for transfer speeds of up to 207 Mbps and
results in up to 98 percent reduction in the amount of data. This substantial decrease in amount
of data to be stored can aid with the compliance to regulations such as HIPAA, Sarbanes-Oxley
and the ECT Act, which require the storage of system log files for accountability and legal
purposes. The use of compression also decreases the “on the wire” time which can save expensive
bandwidth at the expense of the memory and processing time required for compression and
decompression. The next chapter investigates how semantic knowledge can be used to improve
the performance of standard compression programs. It presents the results of preprocessors
which replace timestamps and IP addresses with their binary equivalents and also presents an
analysis of the semantic knowledge present in maillog files.

Chapter 4

Initial Semantic Investigation

Chapter 3 showed that the use of standard compression programs results in a large reduction (up
to 98 percent) in the size of the log files. It also showed that the time to transfer a log file between
two points was improved for transfers speed of up to 207 Mbps.

Figure 4.1: Mail server storing log file and user accessing it without preprocessing

Figure 4.1 shows a diagram illustrating a typical scenario of a mail server producing a maillog
and then compressing it. Once logs have been created they are usually rotated at a set period
and then archived. When the log files are rotated, they are compressed (usually using bzip2

or gzip). The logs are rotated using programs such as: logrotate; rotatelogs; syslog; IIS Log
Archiver; Web Log Miser; and Safelog [7]. These compressed logs are usually viewed using
tools such as bzcat which outputs the contents of a file compressed with bzip2 to the screen.

Log files contain a large amount of semantic information which is exploited by compression pro-
grams. These compression programs use trends such as common sequences and the distribution
of characters to compress the log files. Log files are text files and hence are rather verbose and
do not use all the available ASCII characters. Skibinski [131] states that universal compression
nowadays has reached a plateau and hence there is an increase in creating specialised compres-
sion algorithms. Text preprocessing can be used to exploit specific qualities which are present
in a text file. Section 2.5 shows a number of text preprocessors which have been developed to

80

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 81

improve the text compression by general purpose compressors by exploiting known semantic
knowledge.

Figure 4.2: Mail server storing log file and user accessing it with preprocessing

Figure 4.2 shows a diagram of the same scenario with the use of a preprocessor. The preprocessor
gets called before the compression program is run. When the compression program is run, it
will perform compression on the preprocessor’s output. In order to decompress the file or view
the file, a process needs to be run to reverse the transformation done by the preprocessor after
decompression.

An issue that may arise from this is the added time for compression due to the preprocessing of
data and the processing of data to reverse the transformation performed by the preprocessor. The
time taken for this process could negate the improvements that the preprocessor makes to the
compression ratios and compression times achieved. This problem can be solved by integrating
the preprocessor into the logging process. In this manner it becomes transparent, and hence there
is no time overhead at the time of rotation since the preprocessing is performed as the log is
generated. syslogd can be configured to output the log data to a named pipe. A process can then
be run which performs the preprocessing on the data retrieved from the named pipe and outputs
the transformed data to the log file. This process would result in a log file that is not human
readable in its stored form. However, this can easily be solved by creating a tool which performs
the reverse transformation and outputs the data to the screen in a similar manner to bzcat.

This chapter investigates the use of two simple preprocessors which transform the timestamps
and IP addresses to their binary equivalents. It then investigates the semantic knowledge which
is present in maillog files. Definitions for the metrics (compression time, decompression time,
compression ratio and payload ratio) used in this chapter may be found in Section 2.1.4.

4.1 Timestamps and IP addresses

Two elements which are common in many system log files are timestamps and IP addresses.
These are used to denote times of entries and hosts which are involved in the activity being

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 82

reported. They are stored in text format and are hence more verbose than their binary equivalents.
Considering the number of repetitions, converting these to binary results in a large reduction. The
log files contained in the corpus presented in the previous chapter use three different types of text
log formats: syslogs; apache access logs; and squid access logs. These all contain timestamps
in a fixed position and a number of IP addresses in varying positions within a line of the log
file. These different types of log formats also use different types of timestamps. Their time are
formatted as follows:

syslog: MMM DD HH:MM:SS

e.g. Aug 10 00:02:06

apache access log: DD/MMM/YYYY:HH:MM:SS +TZTZ

e.g. 12/Nov/2005:16:20:55 +0000

squid access log: TTTTTTTTTT.TTT SSSSSS (Unix timestamp with millisecond resolution and
size)
e.g. 1140897487.640 139452

In the squid access log, the timestamp is directly followed by a size which can also be included
when transforming the timestamp. The timestamps for the syslog, apache and access logs take
up 15, 26 and 21 bytes respectively within the log file. Regardless of the timestamp format, by
converting them to binary their size can be reduced. Their binary equivalents use 4, 8 and 8 bytes
respectively. This transformation results in a saving of 11, 16 and 13 bytes respectively for each
occurrence of a timestamp (which is large considering that timestamps occur on every line).

As mentioned, IP addresses are contained within the log files to denote host information and
connection details. They are stored in a textual form consisting of 4 numbers (between 1 and 255)
separated by dots e.g. 192.168.0.1. These numbers can be converted to their binary equivalents
which each occupy one byte. This leads to a reduction of between four bytes (in the case of an
IP address which consist of four single digit numbers, such as 1.1.1.1) and 12 bytes (in the case
of an IP address which consists of four three digit numbers, such as 255.255.255.255).

Unlike the timestamps, which occur in a fixed position within a line on every line, IP addresses
are located in different positions within the line and not every line contains an IP address. These
positions need to be identified, especially in the case where other preprocessing techniques such
as word replacement are being used. Skibinski et al. [133] suggest the use of an escape character
to identify IP addresses which are converted to their binary equivalents. This means that the
IP addresses are encoded using five bytes rather than four bytes (the extra byte is used for the

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 83

escape character). This results in a reduction of between 3 bytes and 11 bytes when storing an
IP address in its binary form.

The remainder of this section describes the methodology which is used to replace IP addresses
and timestamps with their binary equivalents and the improvements in compression ratio and
compression time achieved when using this methodology.

4.1.1 Methodology

Since the timestamp is always found at a fixed point in the line, no escape characters need to
be used to identify the timestamp. IP addresses, however can occur in a number of different
positions in the line. For this reason, an arbitrary escape character (in this case ASCII character
5 is used - which is not found in the file) is included before the IP address. After this escape
character, the four bytes which follow represent the IP address. In the case where there is no
character which doesn’t occur in the file, the ASCII character 5 can be escaped when it occurs
(in the same manner as \ is escaped as \\ in text files) so that the IP address can be identified. The
aim of the initial semantic investigation is to determine the effects that a simple preprocessor will
have on the compression ratio and compression times of the standard compression programs.

Preprocessing

The preprocessing is performed by calculating a number which represents the entity. This num-
ber is stored in binary in the file in place of the entity which it represents. The numbers are
calculated as follows:

Let the date be divided up into year, month and day. MMM is used to represent the month from 0
to 11, DD is used to represent the day from 0 to 30 and YYYY is used to represent the year. Let
the time be divided up into hours, minutes, seconds and timezone. HH is used to present the hour
from 0 to 23, MM is used to represent the minutes from 0 to 59, SS is used to represent the amount
of seconds from 0 to 59, MS is used to represent the amount of milliseconds from 0 to 999, and
TZ is used to represent the timezone (the amount of hours ahead or behind GMT). For the squid
access log, let T represent the unix time, MS the millisecond resolution and S the size.

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 84

Algorithm 1 Algorithm to calculate binary date for syslog file
The binary representation of the number returned by:

return (((MMM*31)+DD-1)*5184000)+(HH*3600)+(MM*60)+SS

Algorithm 1 shows how the binary representation of the timestamp for syslog files is calculated.
The number returned in this algorithm is in the range [0, 1928447999], which can be stored in
less than four bytes.

Algorithm 2 Algorithm to calculate binary date for squid access log
The binary representation of T followed by the binary representation of the number returned by:

while (S>4294966)

{

remove the last character from S and insert it at the beginning

of the line

}

return MS+(S*1000)

Algorithm 2 shows how the binary representation of the timestamp and size for squid access log
files is calculated. T is in the range [0, 1140897491] , while MS is in the range. The number
returned by the algorithm (MS+(S*1000)) is in the range [0, 4294966999]. This means that the
binary number can be stored in less than eight bytes.

Algorithm 3 Algorithm to calculate binary date for apache web log
The binary representation of the number returned by:

Date = (YYYY*12*31)+(MMM*31)+DD

Time = (HH*3600)+(MM*60)+SS

return (((Date*86400)+Time)*12)+|TZ|*(TZ/|TZ|)

Algorithm 3 shows how the binary representation of the timestamp for apache web log files is
calculated. This algorithm returns a signed integer. The range for Date is not clear since it
is dependent on the range of the year. The number returned by the algorithm has a range of
[−3856895999999,+3856895999999] for YYYY<10000, which requires 41.81 bits (5.22 bytes) to

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 85

store, and a range of [−836075519999,+836075519999] for YYYY<2100, which requires 39.60
bits (4.95 bytes) to store. This means that the binary number can be stored in less than eight
bytes.

Calculating the number for the IP address is simpler. It is calculated by representing each of the
four numbers in the IP address as a byte. The preprocessing described in this section is performed
by Python scripts which may be found in Appendix E.1.3.

Conducting the tests

The tests are divided into two categories: The preprocessor which only transforms the times-
tamp (T); and the preprocessor which transforms both the timestamp and the IP address (T&IP).
These preprocessors transform the file with their respective transformations and produce smaller
binary files. These smaller files are then compressed and decompressed five times and the results
recorded. This is the same procedure that was used to obtain the results found in chapter 3.

Test corpus

Four out of the seven files of the corpus introduced in the previous chapter are used as the test
corpus for the initial semantic investigation.

Log Format Log files (in order of size)

apache httpd-access.log

squid access.log.1

LibPCap darknet-200508.cap

syslog all, mail.log, message, xfer.log

Table 4.1: Log formats used by the seven log files in the corpus

The seven files in the corpus use four different formats for logging. The log formats used by
the seven files are shown in Table 4.1. Since these tests are focused on text preprocessing, the
darknet capture file is not tested. Four out of the seven files in the corpus use the syslog format.
Only the two largest files the generic syslog file (all) and the mail log file (mail.log) are included
in the test corpus for this section. The corpus for this section therefore contains four text log
files: the squid access log (access.log.1); the apache access log (httpd-access.log); the generic
syslog (all); and the mail log (mail.log).

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 86

4.1.2 Results and Analysis

File Original Size T T&IP

access.log.1 228045444 205782323 (0.9) 189764939 (0.83)

all 62033795 56442347 (0.91) 54807466 (0.88)

httpd-access.log 88824626 80700506 (0.91) 76829332 (0.86)

mail.log 48213167 44013239 (0.91) 43146796 (0.89)

Table 4.2: Size of files in bytes (ratio to Original Size) after preprocessing with T and T&IP

Table 4.2 shows the size of the files following the transformations. The figures contained within
the brackets are the ratio of that file to the original file before transformation. The file sizes of
the original file are also included in the table. As expected, this table shows T&IP producing
a larger reduction in filesize than T. This is since T does not perform any reductions on the
IP addresses. This table also shows that these simple preprocessors produce reductions in the
filesize of between 9 and 17 percent.

File Name File Type Avg Line Length Reduction Percentage

all syslog 132.133 11 8.32

access.log.1 squid 142.406 16 11.24

httpd-access.log apache 217.669 13 5.97

mail.log syslog 136.754 11 8.04

Table 4.3: Percentage reduction in line length (line length and reduction in bytes) when trans-
forming timestamp to binary

Table 4.3 shows the percentage reduction in the average line length by transforming the times-
tamp into binary. This explains the results for the ratios achieved by T. access.log.1 shows the
highest reduction, while the other files show a similar percentage reduction. Table 4.2 shows a
difference between the ratios achieved by T and the ratios achieved by T&IP. This is due to the
conversion of IP addresses to binary.

Table 4.4 shows the number of IP addresses which occur in the file and the difference between
the compression ratios achieved by T and T&IP. The more IP addresses which occur, the larger
the reduction and hence the larger difference between T and T&IP.

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 87

T&IP - T # IP addresses
access.log.1 0.07024 258525

all 0.02635 195127
httpd-access.log 0.04358 208027

mail.log 0.01797 192007

Table 4.4: Number of IP Addresses and difference in compression ratio for T and T&IP

File None T T&IP
access 5.35091 5.76037 5.96430

all 5.41494 5.63265 5.77689
httpd-access 5.54863 5.74911 5.85994

mail 5.44533 5.64922 5.77780

Table 4.5: Character-based entropy for files before and after preprocessing with T and T&IP

The question is how these processed files will be compressed using other compression programs
such as the ones presented in the previous chapter. The transformed files are reduced in size,
however they now contain binary characters introduced by the transformation of the IP addresses
and timestamps to binary. This means that some of the textual redundancy has been removed
and replaced with a different form of redundancy. There is also a change in the distribution of
characters and the context in which characters occur. Section 3.2.1 noted a higher compression
ratio on the binary LibPCap data files than the text files. At this point it is unclear as to the extent
to which these new binary characters will affect the payload ratio achieved by the compression
programs. A higher payload ratio is expected due to the reduced redundancy. The reduced redun-
dancy, however, is complemented by a smaller file size which needs to be compressed. This leads
to the possibility that a higher payload ratio combined with a smaller file may result in an overall
lower compression ratio than a larger file on which a lower payload ratio is achieved. The next
three sections will analyse the entropy, compression ratio and compression and decompression
times achieved on preprocessed files.

Entropy

As noted in Section 3.2.1, the character-based entropy is a good predictor of the compression
ratio since it reflects the redundancy due to the distribution of characters.

Table 4.5 shows the character-based entropy for the files and the transformed file using T and
T&IP. T&IP achieves a higher character-based entropy than T. This indicates that T contains a

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 88

higher amount of redundancy due to the distribution of characters than T&IP, and hence a lower
payload ratio is expected on T than T&IP. The reduction in file size, however is higher for T&IP
than T and might lead to an overall improvement in compression ratio.

File T T&IP Entropy Rate

Avg Min Max Avg Min Max Character 5

access 12.8027 6.36285 13.4781 12.1449 5.53729 13.2372 6.22261

all 11.799 3.99743 14.199 11.3348 3.95485 13.9492 7.68407

httpd-access 11.5704 3.90046 14.7 10.9647 3.82895 14.113 7.41089

mail 11.855 4.11936 14.3348 11.3676 4.09055 14.0578 8.11845

Table 4.6: Number of bits required to encode binary characters contained in the files preprocessed
with T and T&IP

Table 4.6 shows the statistics for the number of bits required to encode to the binary characters
(i.e the entropy rate for those characters introduced in Section 2.1.3) which are introduced by
the binary encoding of the timestamps and IP addresses with the preprocessors. T&IP contains a
higher ratio of binary characters than T since the IP addresses are in textual form in T, and binary
form in T&IP. The higher frequency causes a lower average entropy rate for these characters
(using a character based model), however the average entropy rate for the other characters is
increased leading to a higher overall entropy rate for the data source. Not surprisingly the entropy
rates for ASCII character 5 when using T&IP is lower than the average entropy rate for the binary
characters. The entropy rate for ASCII character 5, in this case, is related to the number of IP
addresses which occur in the file (access has a lower entropy rate for character 5 than mail since
more IP addresses occur in access than in mail).

If only considering character-based redundancy, a higher average entropy for characters means
that less bytes are saved by the transformation when the files are compressed. Compression
programs, however, also use other techniques such as sliding windows and context statistics
when performing compression.

Compression Ratio

Overall, the compression ratio achieved by the preprocessors is higher for T than T&IP, but the
entropy is lower which means a lower payload ratio is expected. It is therefore unclear what
the improvement in compression ratios for T and T&IP in combination with other compression

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 89

programs will be. This section investigates the results achieved for the compression ratio on the
corpus. It investigates the improvements in compression ratio when using these preprocessors
and also the difference between the results for the compression ratios of the two preprocessors.

T T&IP

Average Ratio Average Improve Average Ratio Average Improve

lzop(1) 0.17284 0.01188 (6.87) 0.16937 0.01535 (9.06)

lzop(2) 0.12708 0.00683 (5.37) 0.12958 0.00433 (3.34)

7zip 0.07871 0.00279 (3.54) 0.07981 0.00169 (2.12)

arj 0.12329 0.00283 (2.3) 0.12603 0.00009 (0.07)

gzip 0.11816 0.00244 (2.06) 0.12058 0.00003 (0.02)

zip 0.11817 0.00244 (2.06) 0.12058 0.00003 (0.02)

bzip2 0.08872 -0.00081 (-0.91) 0.09201 -0.00433 (-4.71)

ppmd 0.07246 -0.00732 (-10.1) 0.07502 -0.00988 (-13.17)

Table 4.7: Average compression ratio and average improvement in compression ratio with the
use of T and T&IP (ordered by average improvement from largest to smallest)

Table 4.7 shows the average improvement in compression ratio by each compression program
with the use of T and T&IP as preprocessors. The rankings of the compression ratios when
using both preprocessors are the same as the rankings in the results presented in Section 3.2.1.
As seen in the results presented in Section 3.2.1, without the use of the preprocessors gzip and
zip produce similar compression ratios. When using both preprocessors, gzip and zip display
similar compression ratios and hence similar improvements in compression ratios. arj shows a
greater amount of improvement than gzip and zip, however the compression ratio achieved is
still higher than gzip and zip.

Out of the statistical based compressors, 7zip is the only compression program which shows an
improvement in compression ratio when using the preprocessors. bzip2 and ppmd’s compression
ratios are not improved using the preprocessors. Despite the increase in compression ratio for
ppmd with the use of preprocessors, the compression ratios with the use of the preprocessors
remains lower than the compression ratios achieved by 7zip with the use of the preprocessors.

A closer investigation into the results reveals that for all the compression programs except bzip2,
there exists a compression level which produces an improvement in compression ratio when
using a preprocessor. The first three levels of zip and gzip, all levels of lzop, level 7 of 7zip,
level 4 of arj and level 1 of ppmd achieve higher compression ratios when using the T&IP

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 90

preprocessor. All the compression levels of bzip2 and all the compression levels of ppmd from
level two do not show an improvement in compression ratio when using the T preprocessor.
Compression level one of ppmd does, however show an improvement as well as the rest of the
compression levels of the compression programs.

Table 4.7 shows that zip and gzip show an improvement on average, however it is not a dra-
matic improvement. zip and gzip use the DEFLATE algorithm. LZ77 replaces sequences of
characters with back references. Once the LZ77 is completed, it encodes the result using Huff-
man encoding. LZ77 would therefore use a sequence e.g. "Aug 10 00:" and make a reference
of 2 bytes for each subsequent appearance. This result would then be encoded using Huffman
encoding. By changing the timestamp to binary, this redundancy is removed and is replaced with
a bit-level redundancy. This removes the improvement achieved by LZ77.

In Table 4.7, the results for the compression ratio achieved by T&IP tend to be higher than the
results achieved by T (with the exception of lzop(1)).

Min Max Average

bzip2 0.00334 0.00369 0.00352

arj 0.00120 0.00340 0.00274

ppmd -0.00784 0.00418 0.00256

lzop(2) 0.00159 0.00296 0.00250

gzip 0.00045 0.00356 0.00241

zip 0.00045 0.00356 0.00241

7zip -0.00007 0.00296 0.00110

lzop(1) -0.00415 -0.00333 -0.00347

Table 4.8: Difference between improvement of T and T&IP

Table 4.8 shows the difference between the compression ratios achieved by compression pro-
grams with the use of T as a preprocessor and with the use of T&IP as a preprocessor. A
negative value for the difference indicates a greater compression ratio when using T than when
using T&IP and a positive value indicates a greater compression ratio when using T&IP than
when using T. Before compression, the preprocessor T&IP resulted in a greater reduction in file-
size than T (i.e a lower compression ratio). After compression, however, the larger file produced
by T shows a lower overall compression ratio due to a lower payload ratio on the preprocessed
file. This is suprising, but expected since the file produced by T does have a lower entropy than

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 91

the file produced by T&IP. T achieves a lower compression ratio than T&IP for all compres-
sion levels of bzip2, arj, lzop(2), gzip and zip. For all compression levels of lzop(1), the
first two compression levels of ppmd and compression level 4 of 7zip, T&IP achieves a lower
compression ratio than T.

Compression and Decompression Times

Section 3.2.2 noted that generally an improved compression ratio requires an increase in the
amount of time to compress and decompress the log file. When using preprocessors, an improve-
ment in the compression and decompression times may result, however this might not necessarily
be as high as the time taken by the preprocessor to perform transformations.

Transform Reverse Total

T T&IP T T&IP T T&IP

access.log.1 51.97 129.24 51.79 110.1 103.76 239.34

all 17.88 32.81 11.99 22.64 29.87 55.45

httpd-access.log 20.64 43.41 25.19 38.27 45.83 81.68

mail.log 14.22 23.94 8.79 16.12 23.01 40.06

Average 26.18 57.35 24.44 46.78 50.62 104.13

Table 4.9: Time (in seconds) to perform transformations on log files in the corpus for T and T&IP

Table 4.9 shows the times taken by the preprocessors to perform the transformations on the file.
These preprocessors are unoptimised scripts which replace IP addresses and timestamps with
their binary equivalents in the manner discussed in Section 4.1.1. As expected, T&IP takes
longer to perform the transformation than T. Transforming IP addresses and timestamps can be
performed as it is logged to disk, which removes this time.

Table 4.10 shows the average compression time, decompression time and total time by T (shown
in Table 4.10 (a)) and T&IP (shown in Table 4.10 (b)). The percentage improvement is shown
in brackets. If the preprocessor is not integrated into the logging system, the average time for
compression is increased since the total transform time is greater than the highest improvement
in total time for both T and T&IP.

The improvements cause a change in the ranks observed in Section 3.2.2. lzop(2) becomes
faster than ppmd for both T and T&IP. 7zip also becomes faster than bzip2 for T due to its high

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 92

Comp Decomp Total
7zip 59.12 (28.18) 2.89 (19.73) 62.01 (27.83)

lzop(1) 0.96 (14.17) 1.94 (33.18) 2.9 (27.9)
lzop(2) 16.12 (11.09) 2.2 (9.83) 18.31 (10.94)
bzip2 58.92 (10.42) 9.42 (5.7) 68.33 (9.8)

arj 5.4 (8.74) 2.16 (8.85) 7.56 (8.77)
zip 4.38 (4.72) 1.23 (15.2) 5.61 (7.23)

gzip 3.93 (3.72) 2.39 (10.25) 6.32 (6.3)
ppmd 20.33 (-22.39) 22.97 (-17.22) 43.3 (-19.59)

(a) T
Comp Decomp Total

7zip 63.61 (22.73) 2.96 (17.81) 66.57 (22.52)
lzop(1) 0.94 (16.03) 2.43 (16.43) 3.37 (16.32)
lzop(2) 17.39 (4.07) 2.29 (5.81) 19.68 (4.28)
bzip2 63.67 (3.2) 9.82 (1.66) 73.49 (3)

arj 5.81 (1.75) 2.27 (4.15) 8.08 (2.44)
zip 4.64 (-0.91) 1.24 (14.31) 5.88 (2.73)

gzip 4.11 (-0.66) 2.48 (6.88) 6.59 (2.32)
ppmd 19.72 (-18.75) 22.53 (-14.97) 42.26 (-16.7)

(b) T&IP

Table 4.10: Average times in seconds (percentage improvement) when using preprocessors T
and T&IP with standard compression programs

percentage improvement. There is no change in rank for decompression time. For the total time,
7zip becomes faster than bzip2 when using the preprocessors. Section 5.3.2 notes that gzip is
faster than zip for compression, however its total time and decompression time is slower than
zip. Table 4.10 (a) and Table 4.10 (b) show that in terms of compression time, decompression
time and total time, zip shows a higher percentage of improvement than gzip. This improvement
does not affect the rank for either of the preprocessors. With the use of both T and T&IP, gzip
remains faster than zip for compression, but achieves a slower decompression and total time
than zip.

The increase in compression times by ppmd, which is seen in the tables, is unexpected, but easy to
explain. The increase is due to the increased amount of symbols which leads to a larger context
tree and slower times. The rest of the programs are faster when compressing the transformed
text due to the decrease in file size. 7zip and bzip2 show a large amount of reduction in times.
Since bzip2 and 7zip produce the slowest times, the resulting time improvements when using
the preprocessors is welcome.

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 93

Comp Decomp Total
ppmd 0.61 (3.64) 0.44 (2.25) 1.05 (2.89)
gzip -0.18 (-4.39) -0.09 (-3.37) -0.27 (-3.98)
zip -0.26 (-5.63) -0.01 (-0.89) -0.27 (-4.5)
7zip -4.49 (-5.45) -0.07 (-1.92) -4.56 (-5.3)
arj -0.41 (-6.98) -0.11 (-4.7) -0.52 (-6.33)

lzop(2) -1.27 (-7.02) -0.1 (-4.01) -1.37 (-6.66)
bzip2 -4.75 (-7.22) -0.4 (-4.04) -5.15 (-6.8)

lzop(1) 0.02 (1.86) -0.49 (-16.75) -0.47 (-11.58)

Table 4.11: Average difference between times (percentage difference) for T and T&IP (ordered
by percentage difference)

Table 4.11 shows the difference between the average compression times, average decompression
times and average total times for the two preprocessors T and T&IP. The percentage difference
between the average improvements is indicated in brackets. A positive value for these differences
indicates a slower time for T&IP than T, while a negative time indicates a slower time for T
than T&IP. The values are expected to be negative since the size of the transformed file being
compressed is greater for T than T&IP (which results in the expectation of a slower time when
using the T preprocessors than the T&IP preprocessor). All the times for ppmd display results
contrary to this expectation. These results occur because when the files are transformed with T,
only the timestamps are converted to binary. This means that the context tree will only include
these values after a newline character (since the timestamp is at the beginning of the line) and
other binary values. When the IP addresses are included, the locality of these binary values is no
longer just the beginning of the line, but these values are contained within the line after characters
other than binary characters or newline characters. This leads to a larger context tree and greater
time for prediction and hence greater time for ppmd when using T&IP than T.

4.1.3 Summary

This section has described the improvement in compression ratio, compression time and decom-
pression time with the use of T and T&IP. The preprocessors reduce the file size by between 9
and 17 percent (with T&IP achieving a greater amount of improvement than T). The entropy of
the files, however, show a higher entropy for T&IP than T. This indicates that the redundancy
due to the distribution of characters is greater for T than T&IP. Section 4.1.2 showed that a
higher payload ratio is achieved on T&IP than T. This results in a greater improvement in com-
pression ratio for T than T&IP. The average improvement in compression ratio is 2.88 percent

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 94

for T, while the average improvement in compression ratio is 1.64 percent for T&IP. With the
exception of bzip2, all compression programs have a compression level for that program which
shows an improvement in compression ratio. T&IP does, however, show a greater improvement
in time than T. There is a difference of up to 11.58 percent in terms of the amount of improve-
ment between the two preprocessors. All programs with the exception of ppmd show a faster total
time for T&IP than T. T&IP shows an improvement in total time of up to 27.9 percent, while T
shows an improvement in total time of up to 22.52 percent.

This initial semantic investigation has shown that by exploiting known semantic knowledge, the
compression ratio and compression times can be improved using simple transformations. While
this section does show an improvement, much further improvement is possible. This initial
semantic investigation only compresses the timestamps and IP addresses present in the file. This
disregards aspects such as the frequency of that IP address and the gain of compressing it. When
using T&IP, all IP addresses gets compressed to occupy five bytes. The results presented show
that the improvement in compression ratio by compressing the IP addresses is negligible; in fact
it often leads to a higher compression ratio. Commonly used IP addresses such as 127.0.0.1 (the
IP address for localhost) can be assigned a single character in a dictionary rather than five bytes.
The IP address and timestamps are also not the only semantically based redundancy present in the
log files. There are also many other fields which occur often (such as TCP_HIT within the squid
access log file). Chapter 2 illustrated that word based models are very effective at improving
the compression ratio and that preprocessors which use a dictionary are effective at improving
the compression ratio of English text. The next section investigates the semantics which are
present in maillog files which can be used to create a dictionary to improve the compression ratio
achieved on these log files.

4.2 Analysis of Semantics contained in maillog files

Apart from the timestamp and IP addresses, log files contain many other frequent patterns. From
this point, the focus shifts to extracting semantic information from maillog files that can be used
by preprocessors in a similar manner to the IP addresses and the timestamps. Maillog files are
used since they use the syslog format there are many different processes which send messages
to these log files which leads a diverse range of messages and a hence more complex semantics.
The aim of this analysis is to determine the structure of the log files and the common elements
which are present. It also aims to determine the value of using this semantic information to

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 95

improve compression. This section presents a tool which can be used to analyse the semantics of
a log file and also investigates the structure of maillog files. It also shows how the log analysis
tool can be used to determine the structure of log files.

4.2.1 Methodology

To determine the semantics present in a log file, the structure of the file needs to be analysed and
the values which commonly occur need to be determined. Some log files can simply be tokenised
using a single character such as a space since each field contains a small subset of values. In
the case of syslog files, such as Postfix maillogs, the log files cannot simply be tokenised to
determine the values since there are a wide range of messages which are outputted to the log files
with different formats. The following line is a sample from the 3MB maillog file which is used
for initial testing and development:

Aug 10 00:00:00 titania newsyslog[46545]: logfile turned over

The syslog format contains a timestamp, followed by a hostname, information about the originat-
ing process and a message [17]. The originating process information is of the form Process[PID]

e.g. newsyslog[46545] where the originating process is newsyslog and its PID is 46545. The
timestamp also has a defined form of a three letter month identifier, two characters for the day
of the month (e.g. Aug _9 or Aug 10 where _ indicates a space) and 8 characters for the time,
which is in the format HH:MM:SS. Since these fields are separated by a space, they can simply be
tokenised. The format of the message, however, is defined by the process which is generating
the log line. These messages differ in format and length and hence cannot all be tokenised in
the same manner to determine values of each successive token. The different messages for each
process need to be determined and these can be tokenised to determine the static and variable
parts of those messages.

The methodology for analysing the maillog file consists of two steps. The first step consists of
performing a "handmade" analysis using tools such as grep and lookup tables within a spread-
sheet to determine the semantic knowledge which a maillog file contains. Due to the size, this
can only realistically be performed on a small corpus. The second step consists of developing a
tool which can be used to determine the semantics contained in a log file based on a set of rules
which are formed iteratively. The rules which are formed can be used to perform analysis on a
larger corpus. The analysis was initially conducted using a 3MB maillog file which consisted of

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 96

one day of log traffic and then it was applied to a 1.6 GB corpus of mailogs which consists of 15
months of log traffic. The sections which follow discuss the methodology which was used.

"Handmade" analysis

The "handmade" analysis was performed to determine the type of semantics which are present
in the maillog file. The purpose was also to determine how an automated tool can be developed
to analyse the semantic knowledge which is present in a given syslog file. The "handmade"
analysis can also be used to verify that the tool can accurately determine the semantics present in
the file. As mentioned, the maillog can not be simply tokenised since it uses the syslog format.
The messages for each process need to be determined in order to investigate the semantics. The
handmade analysis was conducted using a 3MB Postfix maillog file which contains one day
of log traffic (24892 messages). Each line of the log file was inserted into a spreadsheet and
tokenised using a space. Lookup tables were then used to isolate the messages for each process
and determine their semantics. The GNU regular expression parser (grep) was also used to
isolate certain phrases which are used for a given process. It was used in the following manner:

grep postfix/smtp\[maillog | grep connect\ to | less

This command was used to get all the log lines for the postfix/smtp which contained the
phrase "connect to". This process was performed for each of the processes in the log file to
make sure that the messages for that process can be described using the results. In this manner,
the semantics were determined.

Tools to analyse files

When analysing a larger corpus, lookup tables and grep cannot be used due to the quantity of
data which needs to be analysed. A tool is therefore desired to analysis the corpus and determine
the semantics. During the "handmade" process, patterns are identified within the messages.
These patterns consist of variable parts which exhibit certain formats such as a date and time or a
number. These variable parts are complemented by static parts which are the same for messages
of that type. For example, consider the following message:

connect to [hostname] Connection Refused (port 25)

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 97

In this example, the variable token is the hostname described in the log line. During the analysis
of the file, the variable token can be replaced with a placeholder in the same manner as place-
holders were used in the "handmade" analysis. The token which is replaced by a placeholder can
be determined by a rule. In this example, the rule would replace all hostnames with the place-
holder [hostname]. An advantage of using a rule-based tool is that the frequency of the various
types of messages can be easily determined.

The tool developed begins by determining all of the processes which occur in the specified log
file and their frequency. It then performs operations on the messages for that log line to strip
away information and replace them with placeholders. Elements such as IP addresses and email
addresses are replaced with values (placeholders) such as IP and email. This is done using a
defined set of rules which are general or process specific. These rules are formed iteratively by
identifying semantics from the output of the program. Since each process outputs a number of
different messages, the lines are separated into the processes.

There are essentially two types of replacements which can occur: replacement on the whole
string; and replacement on part of the string. This tool also uses two different types of rules
called inner rules and outer rules. The inner rules run on the string as each tokenised element of
the message is added (where the tokens are spaces). The outer rules run on the entire message
after the inner rules have been performed. There are these two types of rules since the patterns
can exist as patterns within a line or as separate tokens (such as numbers) which need to be
replaced as the string is built up otherwise. The program designed to determine the semantics
can be summarised by the following steps:

1. Determine the different processes involved and store a list of them

2. Print out the processes followed by the frequency of messages for that process

3. Read the rules from the file

4. Tokenise string using a space and run inner rules as each token is added to form the entire
string

5. Run the outer rules on the resulting string

6. Update the frequency of the resulting string in the relevant process’s dictionary

7. Print out the dictionary for each process

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 98

The rules which the program uses can perform a number of operations on the string. These rules
take in two arguments: the first is the search criteria which differs according to the operation;
and the second is the replacement string. The operations which can be performed in the tool
developed by the researcher are: replregex, rfind, search. These are defined as follows:

replregex replaces a given regular expression (defined in the search criteria) with a given string
(defined in the replacement string).

rfind searches for the first occurrence of a given string and concatenates the string before
that point with the replacement string.

search is similar to replregex, however if it finds an occurrence of that regular expression
occurs, the the entire string is replaced by the replacement string

The rules are stored in a file beginning with the inner rules for all processes and followed by
the inner rules which are process specific, which are in turn followed by the outer rules which
run on all processes and the outer rules which are process specific. The rules are run on the
string in the order in which they occur in the rules file. Rules files developed for the 3MB
maillog file and the corpus of maillogs can be found in the Appendix E.2. These are described
in the next two sections. This program is implemented using Python due to its good support for
regular expressions and the dictionary data structure. The code for this program can be found in
Appendix E.1.4.

Building a rule set

The rule set is built iteratively using observations from the output and adding appropriate rules
to replace variable elements such as hostnames, IP addresses and message identifiers with place-
holders.

The rules are written in the following format:

Pr: process (for process specific rules)

O: operation

P: parameter

R: replacement string

The following rule would therefore be used to replace all the hostnames with the word hostname:

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 99

O: replregex

P: localhost|(([A-Za-z0-9\-_]+\.)+[A-Za-z]{2,3})

R: hostname

Appendix B details the rest of the rules which can be applied to a maillog file.

Adding rules for the larger corpus

The larger corpus contains 15 months of log data. Within these 15 months, 21049570 log mes-
sages were generated by 40 different processes. The 3MB maillog used in the previous sec-
tion, however, only contained 24892 log messages generated by 17 different processes. The
results on the larger corpus using the rules presented in the previous section can still be im-
proved. The larger corpus shows a number of new messages and new processes. postfix/smtpd,
postfix/qmgr, postfix/smtp, postfix/cleanup, amavis, sqlgrey, postfix/anvil,
postfix/error, postfix/virtual, postfix/master and postfix/scache produce 99.5 per-
cent of the log messages. Each the other processes produce less than 0.16 percent of the log
lines. Hence, the focus is only on creating rules which improve these ten processes. Rules are
only formed for patterns which occur in more than 0.1 percent of the messages for a process.
Appendix B details the rules which are added.

4.2.2 Results and Analysis

This section presents an analysis of the results of the semantics contained in the mail log files us-
ing the "handmade" analysis on and the results from when using the tool with the rules described
in Appendix B. The detailed results are contained in Appendix C.

As mentioned, the 3MB maillog file consists of 24 892 messages which are created by 17 differ-
ent processes.

Table 4.12 shows the distribution of the processes. It shows the number of lines for each pro-
cess and the resulting percentage of the total lines. This table shows that postfix/smtp and
postfix/smtpd account for 59.95 percent of the log entries, while postfix/smtp, postfix/smtpd,
postfix/qmgr, postfix/cleanup and amavis account for 97.60 percent of the log entries. This
section details the results for these five processes.

Table 4.13 shows the percentage of log lines which occur in the corpus which contains 15 months
of log data for each of the top five processes. This corpus contains 15 files which each contain

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 100

Process Number % Process Number %
postfix/smtpd 9534 33.83 postfix/bounce 42 0.15
postfix/smtp 7363 26.12 postfix/local 24 0.09
postfix/qmgr 6242 22.15 postfix/discard 7 0.02

postfix/cleanup 2893 10.26 postfix/tlsmgr 7 0.02
amavis 1476 5.24 postfix/postfix-script: 2 0.01

postfix/anvil 258 0.92 postfix/master 2 0.01
postfix/scache 181 0.64 imapd: 2 0.01
postfix/virtual 98 0.35 newsyslog 1 0
postfix/pickup 52 0.18

Table 4.12: Frequency of processes in the 3MB maillog file

Min Maximum Average Concat
postfix/smtpd 32.571 47.396 42.820 42.808
postfix/smtp 10.889 25.340 14.391 12.899
postfix/qmgr 18.765 29.193 22.856 22.358

postfix/cleanup 8.661 11.622 10.127 9.978
amavis 3.814 6.286 5.026 4.959

Table 4.13: Distribution of processes in 15 month maillog corpus (Top 5 processes shown)

one month of log data. The minimum percentage, maximum percentage and average percentage
for these 15 files is shown in the table. The percentage of log lines for the concatenated corpus
is also shown in the table. This table shows that these five processes generate between 87.867
percent and 98.215 percent (average of 95.220 percent) of the log entries in the 15 files. This
section shows the results for the analysis of the log messages for these five processes. The results
for the five processes are contained in Appendix C.

By inspection, the results for both the 3MB maillog file and the maillog corpus show a number
of trends. The following words (or phrases, phrases are contained in "") commonly occur in the
lines for each of the five processes:

postfix/qmgr: relay, to, from, size, nrcpt, delay, delays, status, expired, dsn, deferred, "queue ac-
tive", "returned to sender", "delivery temporarily suspended", "Connection refused", "con-
nect to hostname"

postfix/smtpd: connect, disconnect, client, RCPT, connections, unavailable, warning, verifica-
tion, "NOQUEUE: reject: RCPT from", "Recipient address rejected: Domain not found",
"connect from", "disconnect from", "Connection concurrency limit exceeded", "setting up

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 101

TLS connection from"

postfix/cleanup: message-id, warning

postfix/smtp: host, said, to, relay, delay, dsn, status, sent, queued, connect, certificate, verifica-
tions, "Queued mail for delivery", "connections refused", "refused to talk to me:", "Opera-
tion timed out", "No route to host", "The users mailbox is full. Please try re-sending your
e-mail later. (in reply to RCPT TO command)", "certificate verification failed for", "Server
certificate could not be verified"

amavis: Passed, CLEAN, Message-ID, mail_id, Hits, queued_as, "Passed CLEAN"

By replacing these words or phrases with tokens from the zero frequency characters, the filesize
can be reduced before compression. There are many different word or phrases which can be
replaced, so a score need to be calculated to determine which words take precedence for inclusion
in the dictionary. This is discussed in the next chapter.

4.2.3 Summary

Within the maillog files, there are a number of different elements that can influence the semantics
contained in the log file, including: the versions of software being used; the processes which are
set to log to that file; and the verbosity level at which the logging is taking place.

The results of the analysis of the log files shows that there are a number of words and elements
(such as hostnames, IP addresses and numbers) which occur frequently within the log file. For
both the results for the 3MB log file and the corpus of 15 months of maillogs, phrases such
as "connect from" and words such as "to", "from", "relay", "delay" occur often. These seman-
tics can be exploited by a preprocessor. Section 4.1 showed that using preprocessors to reduce
the timestamps by converting them to binary causes an improvement in the compression ratios
achieved by compression programs. Within the log files, there are a number of properties which
can be exploited by a preprocessor. These include:

1. Text log files contain many unused characters (zero-frequency characters)

2. Timestamps and IP addresses take up alot more space than they should

3. Certain hostnames and IP addresses occur many times within a log file

CHAPTER 4. INITIAL SEMANTIC INVESTIGATION 102

4. There are a number of other words and phrases which occur often to describe values which
vary

The common hostnames and IP addresses can be replaced using the unused characters within
the log file. Section 2.5 showed that preprocessors using word-based replacement provide an
improvement in compression ratio for English text by replacing frequent words with tokens.
This section has shown that there are a number of different words which occur frequently within
the log file. These words can be used to perform word-replacement using the zero-frequency
characters. In order for this method to work, dictionaries need to be built which can be used
for replacement. The rest of this thesis focuses on building dictionaries which can be used by
preprocessors to exploit the semantic information which has been shown in this section.

4.3 Summary

In the previous chapter, it was shown that the use of standard compression programs resulted in a
large reduction (up to 98 percent) in the size of log files (refer to Section 3.2.1 for more details).
This chapter has shown that simple preprocessors which replaced the timestamps and IP address
with their binary equivalents resulted in an improvement in the compression ratio, compression
time and decompression time achieved by the standard compression programs. Section 4.2 also
showed that within a mailog file there are many different commonly occurring words and phrases
which can be replaced with a single character. The next chapter investigates the improvements in
compression ratio, compression time, decompression time and memory utilisation which result
when performing word replacement. It also presents a methodology for constructing a dictionary
based on a word definition and word score.

Chapter 5

Word-based replacement

There are many repeated elements within log files apart from the timestamps and IP addresses.
These include elements such as: hostnames; frequently used mail addresses; and field tags such
as "to" and "from". The initial semantic investigation presented in Section 4.1 showed an overall
improvement in the compression ratio, compression time and decompression time achieved with
the use of preprocessors which reduced the size of timestamps and IP addresses within the log
file. However, these preprocessors do not exploit the redundancy due to the other commonly
repeated elements within the log file.

Figure 5.1: Character Distribution of the 3MB maillog file

103

CHAPTER 5. WORD-BASED REPLACEMENT 104

Figure 5.1 shows a histogram of the character distribution of a three megabyte Postfix maillog file
which contains one day of log messages. The X-Axis shows the ASCII value of the characters,
while the Y-axis shows the frequency of the characters. This figure shows that there are many
zero-frequency characters contained in a maillog (A table of the zero-frequency characters can
be found in Appendix D). Replacing the repeated elements with zero-frequency characters can
therefore be used to decrease the file size before compression.

The replacement of words does, however, remove character-based redundancy and sequential
redundancy which are exploited by compressors. Since the words are replaced with a unique
identifier, the context in which the word occurs still remains. This introduces a new form of
redundancy and means that some sequences which are used by compressors remain (however
they are now shorter and include the unique identifier instead of the word). Abel [130] shows
that replacing commonly occurring words with zero frequency characters leads to an improve-
ment in the compression ratio for various English based texts from the Calgary Corpus and the
Canterbury Corpus.

This chapter discusses a method for constructing a dictionary for a file based on a given word
definition and word score. It then presents and discusses the results for preprocessors which per-
form word replacement using these dictionary and the improvements which results when using
these preprocessors with standard compression programs. Definitions for the metrics (compres-
sion time, decompression time, compression ratio and payload ratio) used in this chapter may be
found in Section 2.1.4.

5.1 Constructing a dictionary

The first step in the process is to construct a dictionary to be used for word replacement. The
words in the dictionary are replaced with zero-frequency characters in a similar manner to the
process outline by Abel [130]. This requires criterion for building the dictionary to be defined.
This dictionary can be built and "tweaked" manually until it is optimal, however an algorithm
for automatically generating a near optimal dictionary for a file is desired. The first step in this
process is to define what constitutes a word or phrase.

CHAPTER 5. WORD-BASED REPLACEMENT 105

5.1.1 Definition of a word

Essentially a word contains one or more letters from a to z in lower case or uppercase. A single
letter can be considered a word in any given language. However these cases are not consid-
ered to be words in this definition because there is no value in reducing a single character. The
regular expression [A-Za-z]{2,} can therefore be used to describe a word. Within a maillog,
there are many common words which contain dashes and underscores. In order to take these
words into account, the regular expression can be extended to be [A-Za-z\-_]{2,}. Further
observation reveals that certain hostnames appear very often within the maillog. In order for a
word definition to include these hostnames, a dot needs to be part of a word. The updated reg-
ular expression is therefore [A-Za-z\-_\.]{2,}. The maillog also contains many instances of
“words” which contain numbers. The updated regular expression, [A-Za-z0-9\-_\.]{2,}, in-
cludes these words in the word definition. The maillog file also contains many instances of email
addresses. The @ character could also be included as part of the word definition, however, this
would give poor results since all instances of hostnames in email addresses would become part
of different words which leads to a lower frequency for hostname.co.za and a low frequency
of words such as person@hostname.co.za. The lower frequency means that neither of these
words are likely to be included in the dictionary. The @ character is, therefore, not include in the
definition.

The test results presented in Section 5.3 will therefore show results for the following regular
expressions (referred to as word definitions):

A: [A-Za-z\-_]{2,}

B: [A-Za-z\-_\.]{2,}

C: [A-Za-z0-9\-_\.]{2,}

Once the words that are contained in a file are determined (using the word definitions), the next
step is to define how the words are selected for the dictionary.

5.1.2 Function for a score

A feasible method for determining whether a word should be included is to define a score which
can determine the value of replacing the word. This may be accomplished by using a function
based on the frequency of that word. A basic function would be g1(fi)= f i where fi denotes the

CHAPTER 5. WORD-BASED REPLACEMENT 106

frequency of a word i. (i.e. In the text "This is a test, Yes it is", fi = 3 where i ="is"). This
basic function is not ideal, since if there are 5000 instances of the word "abc" and 1000 instances
of a 50 letter word j, then j might not make it into the dictionary since g1(1000) = 1000 and
g1(5000) = 5000 which means that "abc" would be chosen before j for the dictionary using this
function.

An effective function would ideally represent the gain of replacing a particular word in the file.
This can be done by taking into account the length of the word. g2(fi, li)= f i × (li − 1) where
liis the length of the word i (i.e li = 2 where i ="is"). (li−1) is used rather than li since the word
i of length li is being replaced with a single character, i.e. The text is being reduced by (li − 1)

characters every time the word i occurs (which is fi times). Using the earlier example of "abc"
and the 50 letter word (j); g2(5000, 3) = 10000 and g2(1000, 50) = 49000. This means that
j would be chosen before "abc" for the dictionary using this function. More complex formulas
may be developed, however this is left for future work.

The test results presented in Section 5.3 use the following scores to select their dictionaries from
a set of words:

1. fi

2. fi × (li − 1) where liis the length of the word i

5.1.3 Putting this together

Now that a word definition and a criteria to select a dictionary has been formed, these definitions
need to be applied to build a dictionary from a file. This process is defined formally as follows:

1. Determine the set of zero-frequency characters, A

2. Determine the frequency, fi, of each word i

3. Calculate a score si based on the frequency fi (i.e. si = g(fi))

4. Construct the set W = {j : si < sj for all i /∈ W} such that | W | = | A |, and
create a one-to-one mapping, h(w), of W onto A. Thus h(w) where w ∈ W yields the
ASCII value associated with the word w and the inverse function (which exists since h is
a bijection), h−1(a) where a ∈ A yields the word associated with the ASCII value a.

CHAPTER 5. WORD-BASED REPLACEMENT 107

Essentially the set W contains all the words with the highest scores (i.e. the words which need
to be included in the dictionary).

Algorithm 4 Construction of Dictionary Mapping (the function h−1(a))
counter=256

for line in file

for each character

if character not used before

mark as used

counter=counter-1

for each word in line

update word count for that word

update list w which contains sorted list (by score) of counter word

i=0

for each unused character (a)

associate a with w[i]

i=i+1

Algorithm 4 shows an algorithm which performs this procedure. To improve speed of construc-
tion and make the algorithm adaptive (i.e. it updates as it goes along), it begins with all the
characters available and keeps a sorted list (w) of the words with the highest scores. The algo-
rithm processes each line of the file, updating the available characters, the words in the list w and
keeping the list w smaller than the number of available characters. Once all the lines have been
processed, the dictionary is formed by going through the list of unused characters and associating
each character, a, with a word in the list w. In this algorithm, the first character will be associated
with the word that has the largest score and the second character with the word with the second
highest score and so on.

5.1.4 Applying the dictionary

The dictionary is applied by using a search and replace function. Each occurrence of the word
in each line of the file is found and replaced with the associated character set determined by
the dictionary mapping. This character set is made up of combinations of the zero-frequency
characters. Different Methods of coding can be used. Prefix-free codes could be created from
the zero frequency characters, two letter combinations could also be used. These methods would
make more character combinations available and hence a larger dictionary can be used. The
character combination which replaces a given word is determined by the dictionary mapping. In
this thesis, single zero-frequency characters are used for replacement. Other methods of coding
are discussed in Section 5.1.6

CHAPTER 5. WORD-BASED REPLACEMENT 108

5.1.5 Implementation

There are two parts to the implementation of this process: determining the dictionary mapping
and performing search and replace. The implementation is done on a small data set (3MB maillog
file which consists of one day of log traffic) and then applied to a larger data set which consists
of 15 months of log data. This section describes how these two parts are implemented.

Determining the Dictionary Mapping

Determining the dictionary mapping can be divided into three steps: determining the words; de-
termining the zero frequency characters; and determining the dictionary mapping. To determine
the words, all consecutive character sets which match a given word definition and their respec-
tive frequencies are determined. Using these frequencies, the word score is calculated and the
required number of words for the dictionary mapping are determined. This research describes
three different implementations for the method of determining the words. All three implemen-
tations are developed in Python as it is a simple language which has good support for regular
expressions and incorporates a dictionary structure (which is required to keep track of the count
of words).

The first implementation stores the frequencies for each word in a Python dictionary structure
and then performs a selection sort on the dictionary so that the words which have the highest
score are outputted first. The second implementation is equivalent to the algorithm presented in
Algorithm 4. This is an alteration of the first method to remove the need for the selection sort
(which proves slow on large dictionaries). In this method, an array is kept which contains the
words which have the highest scores. This array is updated every time a word is found, and is
used to output the dictionary. The third implementation also uses a Python dictionary to keep
track of all the words and their counts. At the completion of a day’s log lines, the dictionary
structure is stored in an SQLite database and emptied. The SQLite database contains fields
for the Date, the Word and the Frequency of the word. Once the file has been processed, the
database contains the words and their respective counts for each day which occurs in the log file.
A complex SQL SELECT statement is then used to get the resulting dictionary for a particular
date range. The following statement would be used to get the dictionary (160 words) for the
3MB log file using word definition C, word score two:

select word, sum(freq), sum(freq)*(length(word)-1) from maillog

CHAPTER 5. WORD-BASED REPLACEMENT 109

group by word order by 3 desc limit 160

In this database, the table maillog contains the words for the 3MB maillog file using word
definition C and their respective frequencies.

Implementation (A,1) (A,2) (B,1) (B,2) (C,1) (C,2)

1 33.844 66.91 34.91 70.728 262.974 556.138

2 42.458 51.63 37.37 43.392 60.808 75.53

3(a) 2.148 2.148 1.976 1.976 3.156 3.156

3(b) 0.144 0.144 0.152 0.154 0.452 0.462

Table 5.1: Times (in seconds) to build dictionary for each of the six word-score combinations
using the three implementations

Table 5.1 shows the times to build a dictionary for each of the six word score combinations
(WSCs). These times are calculated by taking the average of five iterations on the 3MB maillog
file. Implementation three has been divided into two parts: 3(a) consists of processing the file
and creating the database; while 3(b) consists of using a SELECT SQL statement to obtain the
dictionary from the database. The first implementation is slow since it uses a selection sort to
sort the entire dictionary in order of frequency. The second implementation is faster than the
first implementation, on average, since it uses a list to keep track of the dictionary instead of
performing a selection sort. The third implementation is between 93.23 and 99.35 percent faster
than the other two implementations since it writes straight to the database.

In the selection sort, the complexity is O(n2) where n is the number of unique words. The
number of unique words identified is 6590, 6734 and 18929 for word definitions A, B and C
respectively. This causes the first implementation to achieve faster times for word definition A
than word definition B. The second implementation, on the other hand, updates a list every time
a word occurs rather than performing a selection sort. Each time a word occurs, it goes through
the entire list to check if that word is in the list. If the word is in the list, then its position is
updated. If the word is not in the list, then it is added to the list if its word score is greater
than the word score of any word which occurs in the list. This algorithm has a complexity of
O(ab) where a is the length of the list and b is the number of words which occur in the file.
The number of words which get matched by the regular expression are 335 055, 273 931 and
460 424 for word definitions A, B and C respectively. With the length of the list is set to 255,
the approximate number of iterations for the second implementation are therefore 8.54 × 107,

CHAPTER 5. WORD-BASED REPLACEMENT 110

6.98× 107 and 1.17× 107 for word definitions A, B and C respectively. This causes the second
implementation to achieve faster time for word definition A than word definition B. The first part
of the third implementation (3(a)) is only dependent on the number of words which get matched
by the regular expression. It therefore also shows faster times for word definition A than word
definition B.

Interestingly, the first implementation is faster than the second implementation for WSC (A,1)
and WSC (B,1). Approximately 4.34 × 107, 4.53 × 107 and 3.58 × 108 iterations are required
to perform the selection sort for word definitions A, B and C respectively (n2). The second
implementation does not use a selection sort, but rather keeps a list. The approximate number
of iterations required to maintain the list are 8.54 × 107, 6.98 × 107 and 1.17 × 108 for word
definitions A, B and C respectively. The number of iterations are hence greater for the second
implementation when using word definition A and word definition B with word score one. The
times when using word score two are always slower than the times when using word score one
due to the calculation of the score by calculating the length of the word and multiplying it by
the frequency. When using word score two, the amount of calculations of the word score ((l −
1) × f)) in the first implementation is n2 where n is the number of unique words, while in the
second implementation it is ab, where a is the length of the list and b is the number of words
which occur in the file. These numbers are greater for the first implementation than the second
implementation. This results in a greater difference between word score one and word score
two for the first implementation than the second implementation. This greater difference leads
to the preprocessor based on WSC (A,2) achieving faster times than the preprocessor based on
WSC (B,2) using the second implementation. The results presented in Section 5.3 use the third
implementation to generate the dictionary.

Performing search and replace

Two different methods are evaluated for performing search and replace using the dictionary. The
first implementation uses a Python script which goes through each line of the file and searches
for the dictionary words in the line and replaces them with the code specified in the dictionary
mapping. The second implementation uses a Unix program called sed. This program is designed
to perform search and replace on a file given a number of regular expressions to search for and
text to replace occurrences of these regular expressions. To use this program, the dictionary map
is outputted as a sed script. These script contains statements of the form s/Word/Code/g for
compression and s/Code/Word/g for decompression. In these statements, Word represents the

CHAPTER 5. WORD-BASED REPLACEMENT 111

word which is being replaced and Code represents the zero frequency character which is replacing
the word. On the 3MB corpus, The sed scripts take 7.91 seconds, while the Python scripts takes
22 seconds to perform search and replace. The results presented in Section 5.3 therefore use sed
scripts to perform search and replace.

5.1.6 The length of a code

As the number of words which are replaced increases, so too does the reduction by the prepro-
cessor and the amount of time taken to to perform the replacement. A number of different coding
techniques could be used with the zero-frequency characters available. Prefix-free codes can be
constructed using the available characters, however this is not necessary since the words are al-
ways separated by a non-words (they would be parsed as a single word and not two distinct words
in the dictionary generation process if they were not separated by a non-word) which means that
the code does not need to be prefix-free to be identified. This section investigates using a larger
dictionary for replacement combined with two character codes and its effect on the reduction by
the preprocessor and the amount of time taken to perform the replacement.

The codes used to replace words are extended by including two letter codes. They are constructed
as follows: Let the zero frequency characters be represented as ai where i = 1, 2, 3, . . . , n and
n is the number of zero frequency characters. The first set of codes are ai, the second set of
codes are a1ai, the third set of codes are a2ai, etc. The words with the highest n word scores are
mapped to the first set of codes, the next n words with the highest word scores are mapped to the
second set of codes, etc. The tests are performed using the 3MB maillog file which contains one
day of log traffic.

Figure 5.2 shows the amount of reduction by the preprocessor and the time taken to achieve
the reduction. The X-Axis shows the number of characters which are used as a first letter, i.e
the number of sets of codes which are used. In this figure, the dictionary creation times do not
change since this process counts all of the words regardless of the codes given. Only the amount
of words required by the preprocessor changes. If this process did not count all the words then
the locality of words would effect the outcome, and words which occurred infrequently at certain
times would be drowned out by words which occur frequently at a point but then do not occur
frequently at other points in the file. Thus the frequency of all words are counted. There is
a linear increase in time taken to perform the search and replace procedure for a logarithmic
decrease in the compression ratio achieved. The transform time on the 3MB log file increases
from 7.91 seconds to 288.89 seconds, while the compression ratio decreases from 0.54625 to

CHAPTER 5. WORD-BASED REPLACEMENT 112

Figure 5.2: Compressed size and compression time for 3MB log file when using longer codes

0.50888. This is an 6.84 percent reduction in compression ratio with a 3552.21 percent increase
in time. For each additional set of code words, the number of words which can be used in the
dictionary increases by the number of zero frequency characters (typically 160 in maillog files).
As the dictionary grows, the improvement in compression ratio decreases but the increase in the
compression time remains constant. The introduction of longer codes also alters the entropy of
the text and also changes the dynamics of when a character will be predicted. The second binary
character will not be well predicted since any of the other binary characters are possible as well
as a space. Context information is removed by replacing words with codes and the ratio of binary
characters in the file is increased. An increased payload ratio is therefore expected. In light of
these results, this thesis only considers using the zero-frequency characters for replacement since
the use of longer codes results in a high increase in time for a low increase in compression ratio.

5.2 Testing Methodology

The tests were performed using a corpus which contains 15 months of Postfix mail log files.
This corpus is larger than the previous corpus and is also more generalised since is only contains
maillog files. The maillog files use the syslog format and contain a larger variety of messages.
The larger corpus also means that the results are more statistically valid. The process used for
testing is as follows:

CHAPTER 5. WORD-BASED REPLACEMENT 113

1. Generate the dictionaries for each file using the Python script implementation, described
in Section 5.1.4.

2. Apply these dictionaries to the files and record the statistics. SHA1 and MD5 hashes
are performed to verify that the files are identical after decompression to the ones before
compression with the preprocessor. If they do not match then diff is used to determine
where the differences between the two files lie.

3. Run compression tests using the methodology presented in previous chapter on each of the
resulting files for each of the 6 WSCs - (A,1), (A,2), (B,1), (B,2), (C,1) and (C,2) - and the
original files.

This process generates seven (six for the WSCs and one for the original file) sets of statistics
for each of the compression programs. From these results, the improvements in compression
ratio, compression time, decompression time, total time, memory-usage and the improvements
in the transfer times at a given transfer rate for each of the six WSCs can be calculated. The next
section analyses these results and comments on the improvements made. It also shows which of
the WSCs show the greatest amount of improvement and what the cost is. The dictionaries are
generated and used for compression on the file, so hence these results show an upper bound for
the results using the given word definition. In the sections which follow, the preprocessors based
on a given word definition and word score will be referred to by the word definition followed by
a full stop and the word score i.e. the preprocessor based on word definition C and word score 1
(WSC (C,1)) will be referred to as C.1.

5.3 Results and Analysis

WSC (A,1) (A,2) (B,1) (B,2) (C,1) (C,2)

Average 0.68664 0.66598 0.65616 0.64291 0.56470 0.54310

Table 5.2: Average Compression Ratios achieved by the the six preprocessors

Table 5.2 shows the average compression ratio obtained by the preprocessors based on each of
the six WSCs on the test corpus of maillogs. In this section, when the average compression
ratio achieved by a word definition or the average compression ratio achieved by a word score

CHAPTER 5. WORD-BASED REPLACEMENT 114

is mentioned, this refers to the average compression ratio of the preprocessors which are based
on that word score or word definition. This table shows across all WSCs, the compression ratios
achieved by word score 2 are lower than the compression ratios achieved by word score 1. The
average compression ratio achieved by word score 1 is 0.63583, while the average compression
ratio achieved by word score 2 is 0.61733 (2.91 percent lower).

Word definition C achieves the lowest average compression ratio out of the three word definitions.
It achieves an average compression ratio of 0.55390, which is 14.72 percent lower than the
compression ratio achieved by word definition B (0.64954) and 18.10 percent lower than the
compression ratio achieved by word definition A (0.67631).

The dictionaries generated for word definition A contain the least amount of words out of the
three word definitions. This is expected, since any word which satisfies word definition A, also
satisfies word definition B and word definition C. It must be remembered, however, that the set
of word generated by A is not necessarily a subset of those generated by B. A word which gets
matched by word definition A may be followed by a full stop and a number. This means that
the the word plus the full stop would be matched as the word by word definition B and the
word plus the full stop and the number would be matched by word definition C. For example,
consider the text "maillog.1". Word definition A would match "maillog" as a word, while word
definition B would match "maillog." as a word and word definition C would match "maillog.1"
as a word. As mentioned in Section 5.1.5, this does not imply that the number of words matched
is larger for a word expression which produces a larger dictionary. Section 5.1.5 showed that
the number of matches for word definition A is larger than word definition B, however word
definition B produces a larger dictionary than word definition A. Word definition B produces a
lower compression ratio since it contains fewer longer words than word definition A.

The smaller file created by a preprocessor exhibits a different distribution of characters to the
original file due to the replacement of words with zero-frequency characters. This file contains
the previously unused ASCII values (zero-frequency characters) and no longer contains the par-
ticular instances of the characters which occur in the replaced words. The combination of the
usage of more characters and the removal of other characters leads to a loss of redundancy which
is used by different compression programs. For example, the word "hostname" contains 8 char-
acters used elsewhere in the text, would be removed and replaced with a new ASCII values.
This results in a reduction in the size of the file by 7 bytes for each occurrence of the word
"hostname". The word "host", however, could be used as reference for the LZ77, thus removing
redundancy which the LZ77-based compressors exploit. The removal of these characters also
affects the probability of the character "s" following the context "t" in an order-1 Markov Model

CHAPTER 5. WORD-BASED REPLACEMENT 115

(or "t" following "s" in the BWCA). The removal of these characters thus effects the performance
of the BWCA and PPM compression algorithms. The use of the preprocessors does, however,
introduce a new redundancy similar to that which is used in word-based compressors. A space
will predict the character which is used to replace "hostname" with a high probability in the case
where a space is often followed by the word "hostname" in the original file. The LZ77 win-
dow is also virtually enlarged since "hostname" now occupies a single character. Previous work
(presented in Section 2.5) and the work presented in the next section show that these changes in
redundancy, however, result in a increase in compression ratio by the program on the transformed
file. The overall compression ratio (the ratio to the original file), however, is reduced due to the
decrease in filesize by the preprocessor.

The sections which follow investigate the improvements in compression ratio, compression and
decompression times, transfer time (which combines the times and ratios achieved) and memory
utilisation due to the use of the preprocessor. This is followed by a summary of the results.

5.3.1 Compression Ratio

The compression ratio in this section, unless specified, refers to the ratio of the filesize after
preprocessing and compression to the original filesize (as defined in Section 2.1.4). A lower
ratio, therefore, indicates a smaller filesize and hence greater compression.

Rank Lowest Average

1 C.2 (0.12448) C.2 (0.13309)

2 C.1 (0.12497) C.1 (0.13312)

3 B.2 (0.12768) B.2 (0.13779)

4 A.2 (0.12862) A.2 (0.13866)

5 B.1 (0.12876) B.1 (0.13916)

6 A.1 (0.12999) A.1 (0.13986)

7 None (0.14028) None (0.15284)

(a) Compression Ratio

Rank Lowest Average

1 C.2 (197) C.2 (195)

2 C.1 (208) C.1 (200)

3 B.2 (213) B.2 (215)

4 A.2 (230) A.2 (225)

5 B.1 (234) B.1 (237)

6 A.1 (250) A.1 (242)

7 None (264) None (286)

(b) Summed Rank

Table 5.3: Compression Ratio statistics for each Word Score

Tables 5.3 (a) and 5.3 (b) both illustrate statistics for the average of the lowest compression ratios
for each program using the six preprocessors and the average over all compression programs and

CHAPTER 5. WORD-BASED REPLACEMENT 116

levels using the six preprocessors. Table 5.3 (a) shows the average compression ratio achieved,
while Table 5.3 (b) shows the summed rank. The value of the statistic for a given ranking is found
in brackets next door to the preprocessor which achieves the rank. The summed rank statistic for
the preprocessors is calculated by taking the compression ratio statistics for each program using
each of the six preprocessors (A.1, A.2, B.1, B.2, C.1, C.2) and the original results without
preprocessing with the eight compression programs (7zip, arj, bzip2, gzip, lzop(1), lzop(2),
ppmd and zip) and ranking them from lowest to highest. The ranks achieved from 1 to 56 by
each compression program with a preprocessor are summed to give the summed rank for that
preprocessor. These results show that word score two generally achieves a lower compression
ratio than word score one. They also show that word definition C achieves the lowest average
compression ratio out of the three word definitions, while word definition B achieves a lower
average compression ratio than word expression A (0.13848). These results show that the use of
preprocessors improves the compression ratio achieved for all six preprocessors.

The compression programs perform compression on the file which has been transformed by the
preprocessor. As mentioned, a higher payload ratio is expected on the transformed file than on
the original file due to the change in redundancy.

Rank Lowest Average

1 A.1 (0.04048) A.1 (0.04193)

2 A.2 (0.04352) A.2 (0.04548)

3 B.1 (0.04645) B.1 (0.04888)

4 B.2 (0.04840) B.2 (0.05095)

5 C.1 (0.06807) C.1 (0.06974)

6 C.2 (0.07520) C.2 (0.07798)

Table 5.4: Difference between Payload Ratio (for all six preprocessors) and Compression Ratio
(without preprocessing)

Table 5.4 illustrates the difference between the payload ratio and the compression ratio on the
original files (without preprocessing). The results are the inverse of the overall compression
ratios achieved by the preprocessors. Word definition C shows a higher payload ratio than word
definition B and word definition A. The preprocessed files for word definition C are smaller than
the files for word definition B, which are in turn smaller the the files for word definition A. The
reductions by the preprocessor compensate for the higher payload ratios. The higher payload
ratios are caused by the loss of context information and the higher ratio of binary characters.

CHAPTER 5. WORD-BASED REPLACEMENT 117

WSC (A,1) (A,2) (B,1) (B,2) (C,1) (C,2)

Ratio 0.13156 0.12863 0.11268 0.10520 0.25901 0.22157

Table 5.5: Ratio of characters preprocessed files which are binary characters

WSC (A,1) (A,2) (B,1) (B,2) (C,1) (C,2)

Average length 4.78 6.35 6.19 9.73 5.36 7.76

Table 5.6: Average length of words in dictionary for each word-score combination

WSC Avg # Replacements WSC Avg # Replacements WSC Avg # Replacements

(A,1) 17094721.27 (B,1) 13815354.13 (C,1) 20360521.67

(A,2) 16766379.27 (B,2) 13390792.8 (C,2) 1924265.47

Table 5.7: Average number of word-replacements by each preprocessor

Table 5.5 shows the average ratio of binary characters contained in the preprocessed files, Table
5.6 shows the average length of the words which are contained in the dictionaries for each WSC
and Table 5.7 shows the average number of replacements which are made for each WSC on the
test corpus. Table 5.6 shows that the average length of the words for word score two is larger
than the average length of words for word score one for all word definitions. Word score two
therefore selects longer words and thus replaces longer sequences with a single character. Table
5.7 shows that there are more replacements for word score one than word score two for all word
definitions. There is therefore a lower frequency of longer words being replaced for word score
two and a larger frequency of shorter more frequent words being replaced for word score two.
Less replacements leads to a smaller ratio of binary characters (seen in Table 5.5). The smaller
amount of replacements, however, results in a larger removal of context information, which leads
to a higher payload ratio for word score two than word score one (seen in Table 5.4). This table
also shows a larger amount of replacements for word definition B than word definition A. Table
5.6 shows that the average match length for word definition B is larger than word definition A
for all word scores. The combinations of these two results results in a lower ratio of binary
characters (seen in Table 5.5) and a greater improvement in compression ratio by word definition
B than word definition A.

CHAPTER 5. WORD-BASED REPLACEMENT 118

Rank Lowest Average

1 ppmd (0.06041) ppmd (0.07472)

2 7zip (0.07373) 7zip (0.09068)

3 bzip2 (0.08658) bzip2 (0.09291)

4 gzip (0.11889) gzip (0.12801)

5 zip (0.11889) zip (0.12801)

6 arj (0.12131) arj (0.13409)

7 lzop(2) (0.14175) lzop(2) (0.14212)

8 lzop(1) (0.18322) lzop(1) (0.18399)

(a) Compression Ratio

Rank Lowest Average

1 ppmd (28) ppmd (28)

2 7zip (77) 7zip (89)

3 bzip2 (126) bzip2 (114)

4 gzip (206) gzip (204)

5 zip (213) zip (211)

6 arj (253) arj (268)

7 lzop(2) (322) lzop(2) (311)

8 lzop(1) (371) lzop(1) (371)

(b) Summed Rank

Table 5.8: Compression Ratio for each Compression Program when using preprocessors

Table 5.8 (a) and Table 5.8 (b) both illustrate statistics for the lowest compression ratios of
each program on the test corpus and the average compression ratios of each program on the test
corpus when using the six preprocessors. Table 5.8 (a) shows the average compression ratio
over the six preprocessors, while Table 5.8 (b) shows the summed rank. The ranks for each
compression program - preprocessor combination is calculated using the technique previously
described. The ranks achieved from 1 to 56 by each compression program with the use of the
seven preprocessors are summed to give the summed rank for each compression program. The
rankings of the compression programs shown in this table are the same as those presented in
Section 3.2.1, which presents the compression ratios achieved by standard compression programs
on a corpus of log files without preprocessing.

Table 5.9 shows the average improvement in compression ratio for standard compression pro-
grams when using preprocessors. As before, two compression ratio statistics are considered
for each program (the lowest compression ratio achieved and the average compression ratio
achieved) and lzop is split into two categories. ppmd is also split into 2 categories since there is a
large difference between the results achieved by the first seven compression levels and compres-
sion levels greater than seven. The average improvement in compression ratio and the average
percentage improvement in compression ratio are shown for all compression programs. The first
seven levels of ppmd (ppmd(1-7)) achieve the highest amount of improvement and a higher aver-
age improvement than the other two statistical processors (bzip2 and 7zip), while ppmd(8-15)
achieves a negative improvement in compression ratio. lzop, which achieves the highest com-
pression ratio on average, achieves the greatest amount of improvement on average. Section 3.2.1

CHAPTER 5. WORD-BASED REPLACEMENT 119

Lowest Average
Rank Program Improve % Improve Program Improve % Improve

1 ppmd(1-7) 0.05308 26.17561 lzop(1) 0.03125 14.81530
2 arj 0.03041 16.36523 lzop(2) 0.01859 11.74164
3 lzop(1) 0.03134 14.90451 arj 0.01631 10.50141
4 gzip 0.02154 13.06344 ppmd(1-7) 0.01368 10.44285
5 zip 0.02154 13.06335 gzip 0.01457 10.19786
6 lzop(2) 0.01928 12.08503 zip 0.01457 10.19778
7 bzip2 0.01263 10.53796 bzip2 0.00632 6.23975
8 7zip 0.01045 10.05494 7zip 0.00572 5.83692
9 ppmd(8-15) -0.00020 -0.28635 ppmd(8-15) -0.00429 -6.91730

Table 5.9: Average Improvement in compression ratio for Compression Programs when using
preprocessors

notes that arj achieves the highest compression ratio out of the LZ77-based compressors. This
table shows arj achieving greater improvement in compression ratio than gzip and zip. This
improvement, however does not lead to arj achieving a lower compression ratio than gzip or
zip with the use of any of the preprocessors. As in Section 3.2.1, gzip and zip, which both use
DEFLATE algorithm, achieve very similar compression ratios when using preprocessors. They
show the same amount of improvement for all the preprocessors. Each of the compression levels
of the compression programs show a varying amount of improvement. The results and analysis
for each compression level can be found in Appendix E.3.

Summary

For all the compression programs with the exception of 7zip and ppmd, all the compression
levels show an improvement in compression ratio with the use of preprocessors. The higher
compression levels of ppmd show a negative improvement, while compression levels one, four
and eight of 7zip show a negative improvement with the use of at least one preprocessor.

CHAPTER 5. WORD-BASED REPLACEMENT 120

Ranking Program A.1 A.2 B.1 B.2 C.1 C.2

1 (5) ppmd* 6 4 5 3 1 2

2 (6) 7zip 4 3 6 5 1 2

3 (7) bzip2 6 4 5 3 2 1

4 (3) gzip 6 4 5 3 2 1

5 (4) zip 6 4 5 3 2 1

6 (2) arj 6 4 5 3 2 1

7 (1) lzop 6 5 4 3 1 2

Average 5.71 4.57 5 3.29 1.57 1.43

Table 5.10: Compression program ranking summary

Table 5.10 shows a summary of ranking of the compression ratio achieved by the compression
programs with the use of preprocessors. The ranking is shown in the first column and the ranking
of the amount of improvement in compression ratio by that program is shown in brackets. The
rankings of the improvement in compression ratio by the different preprocessors is also found
in the table. ppmd* represents the first seven levels of ppmd. These compression levels show a
positive improvement in compression ratio with the use of preprocessors. The ranking of the
compression programs with the use of preprocessors is the same as the rankings of the com-
pression programs without the use of preprocessors (it is also the same as the ranking of the
programs presented in Section 3.2.1). For all compression programs, word definition C shows
the highest average improvement in compression ratio and the compression levels which achieve
higher compression ratios show a higher amount of improvement in compression ratio. The
LZ77-based compressors and lzop show a higher amount of improvement than the statistical
compressors (7zip, bzip2 and ppmd). Out of the LZ77-based compressors, arj shows a higher
amount of improvement than zip and gzip, but still achieves higher compression ratios than zip

and gzip.

Table 5.11 shows the compression levels of the programs which achieve lower compression ratios
than the lowest compression ratio for that program without preprocessing when using each of the
six preprocessors. This table shows how the use of preprocessors improves the compression ratio
achieved. For zip and gzip, all compression levels greater than or equal to four produce lower
compression ratios for all preprocessors than than compression level nine achieves without the
use of preprocessing.

CHAPTER 5. WORD-BASED REPLACEMENT 121

A.1 A.2 B.1 B.2 C.1 C.2
ppmd - - - - - -
7zip 8,10 10 10 10 10 10

bzip2 6,7,8,9 6,7,8,9 6,7,8,9 5,6,7,8,9 5,6,7,8,9 5,6,7,8,9
gzip 4,5,6,7,8,9 4,5,6,7,8,9 4,5,6,7,8,9 4,5,6,7,8,9 4,5,6,7,8,9 4,5,6,7,8,9
zip 4,5,6,7,8,9 4,5,6,7,8,9 4,5,6,7,8,9 4,5,6,7,8,9 4,5,6,7,8,9 4,5,6,7,8,9
arj 1,2 1,2 1,2 1,2,3 1,2,3 1,2,3

lzop(1) - - - - - -
lzop(2) 7,8,9 7,8,9 7,8,9 7,8,9 7,8,9 7,8,9

Table 5.11: Compression levels which show improvement on lowest compression ratio without
preprocessing

5.3.2 Compression and Decompression Times

MakeDict GetDictionary Compress Decompress Total Reduction

A.1 124.594 17.9649 284.679 335.139 762.38 32.34%

A.2 124.594 18.6177 347.713 344.449 835.37 33.44 %

B.1 110.013 19.2553 270.393 304.503 704.16 34.38 %

B.2 110.013 19.864 316.915 310.595 757.39 35.71 %

C.1 172.061 67.3121 373.915 431.708 1045 43.53 %

C.2 172.061 68.4077 397.041 403.328 1040.84 45.69 %

Table 5.12: Times (in seconds) taken by preprocessors to perform the transformations

Table 5.12 shows the time taken by the preprocessors to perform reductions on the maillog corpus
using the process presented in Section 5.1.5. This table exhibits the same trends which are seen
for the 3MB maillog file (consisting of 1 day of log traffic). Word definition B achieves faster
times than Word defintion A but achieves a greater reduction and the figures for getting the
dictionary increase as the reduction increases. This is due to the number of matches and the
number of unique words which satisfy the word score.

The compression and decompression times for the preprocessors are affected by the amount of
times a word is replaced with a zero-frequency character and the number of unique words. The
average amount of unique words contained in the corpus is 345 733 for word definition A, 357
172 for word definition B and 950 555 for word definition C, while the average amount of words
which can be found in the file are 19 913 988.33, 16 316 646.33 and 26 243 978.13 for word
definitions A, B and C respectively.

CHAPTER 5. WORD-BASED REPLACEMENT 122

Program None A.1 A.2 B.1 B.2 C.1 C.2 Avg % Improve
lzop(1) 1.84 1.75 1.75 1.73 1.71 1.59 1.58 8.31

gzip 7.79 7.19 7.23 7.22 7.27 7.24 7.14 7.37
zip 8.63 8.15 8.27 8.12 8.24 8.04 7.97 5.73
arj 11.11 9.83 9.83 9.67 9.69 9.46 9.2 13.49

ppmd 33.34 31.21 31.23 30.16 30.49 30.5 29.6 8.43
lzop(2) 33.41 31.95 32.47 32.36 32.25 32.21 31.88 3.67
bzip2 100.05 61.08 58.26 56.76 54.51 48.15 44.29 46.19
7zip 174.64 134.84 132.3 131.45 129.81 81.06 82.92 33.92

Table 5.13: Compression Times (in seconds) for standard compression programs when using
different preprocessors

For the six preprocessors, the dictionary is determined by the file which is being compressed.
This means that a two pass process is involved: determining the dictionary and zero-frequency
characters; and performing search and replacement using the dictionary mapping formed in the
first pass. This means that these six preprocessors can not be integrated into the logging process
since the entire log file is required. If the dictionary is predefined (perhaps using trends or
dictionaries formed from the log file for the previous month), then the preprocessing step can be
integrated into the logging process since it only requires in a single pass. This does, however,
mean that the log files which are generated will not be human readable. A program which
performs the search and replace and outputs log data can, however, be used to transform the
output (in the same manner as bzcat can be used to look at files compressed using bzip2).
There are also a number of advantages to using preprocessors on the log files. The dictionary
can be used as an index and searches performed within the file can be performed faster due to
smaller files. The dictionary generated on the file will also contain common hostnames and IP
addresses which appear in the log file being compressed. Investigating the dictionary can also
help to detect anomalies within the log file. An important part of security log management which
involves creating reports which contain the top hostnames and IP addresses which appear in the
log files [7]. These hostname and IP addresses would appear in the dictionary.

This section investigates the improvement in compression and decompression time without the
inclusion of the time taken by the preprocessor to perform the transformation so that the effect
of the use of the preprocessors can be seen. The times listed in Table 5.12 can be added to these
results to see how much the compression and decompression times are increased when using the
preprocessors.

Table 5.13 shows the average compression times achieved with the use of preprocessors and the

CHAPTER 5. WORD-BASED REPLACEMENT 123

Program None A.1 A.2 B.1 B.2 C.1 C.2 Avg % Improve
zip 2.12 2.28 2.16 2.16 2.07 1.83 1.81 3.39 %

lzop(2) 2.7 3.26 3.07 3.04 3.09 2.42 2.13 -4.82 %
lzop(1) 3.05 3.43 3.37 3.35 3.20 2.53 2.36 0.30 %

gzip 3.36 3.69 3.47 3.50 3.45 2.77 2.64 3.00 %
arj 4.09 3.64 3.57 3.50 3.65 3.24 3.24 15.04 %

7zip 6.22 5.72 5.59 5.56 5.57 5.29 5.20 11.76 %
bzip2 19.09 14.37 13.97 13.85 13.72 12.45 11.85 29.98 %
ppmd 36.73 35.79 35.19 35.22 34.74 34.41 32.76 5.58 %

Table 5.14: Decompression Times (in seconds) for standard compression programs when using
different preprocessors

average compression times for each compression program without the use of preprocessors. This
table shows that the use of the preprocessors improves the compression times achieved; however,
this improvement is not as great as the time taken by the preprocessor to perform the transform
and reverse transform. An improvement in compression time is expected since the transformed
file is smaller than the original file. In the initial semantic investigation, which is presented in
Section 4.1, all the compression programs with the exception of ppmd show an improvement
in compression time. Table 5.13, however, shows that all the compression programs (includ-
ing ppmd) show an improvement on the average compression time achieved. This table shows
an improvement in compression time of between 2.82 percent and 55.73 percent. bzip2 and
7zip, which are statistical compressors, both show large amounts of improvement. On average,
bzip2 shows an average improvement of 46.19 percent (which is the highest average out of all
the compression programs), while 7zip shows an average improvement of 33.92 percent (the
second-highest average). Out of the LZ77-based compression programs, arj shows the highest
amount of improvement on average. It achieves an average improvement of 13.49 percent, how-
ever for all six preprocessors it remained slower than both zip and gzip. gzip, which achieves
faster compression times than zip without the use of a preprocessor, shows a higher average
amount of improvement than zip (gzip achieves an average of 7.37 percent improvement, while
zip shows 5.73 percent improvement). This table also shows that there are no changes in rank
due to the improvements by the six preprocessors. The use of preprocessors, however does lead
to lzop(2) and 7zip achieving lower compression times than times achieved by ppmd and bzip2

respectively without the use of preprocessing.

Table 5.14 shows the average decompression times achieved with the use of preprocessors. It
also shows the average decompression times for each compression program without the use of

CHAPTER 5. WORD-BASED REPLACEMENT 124

Program None A.1 A.2 B.1 B.2 C.1 C.2 Avg % Improve
lzop(1) 4.89 5.17 5.12 5.08 4.91 4.12 3.94 3.31 %

zip 10.75 10.43 10.43 10.28 10.31 9.87 9.78 5.27 %
gzip 11.15 10.89 10.7 10.72 10.72 10.01 9.79 6.05 %
arj 15.2 13.47 13.4 13.16 13.35 12.7 12.44 13.91 %

lzop(2) 36.12 35.21 35.54 35.4 35.34 34.62 34.01 3.03 %
ppmd 70.07 67 66.42 65.38 65.23 64.91 62.36 6.93 %
bzip2 119.15 75.45 72.23 70.62 68.22 60.6 56.14 43.59 %
7zip 180.86 140.56 137.89 137.01 135.38 86.35 88.12 33.16 %

Average 56.03 44.99 44.2 43.71 43.15 35.6 34.76 26.71 %

Table 5.15: Total Times (in seconds) for standard compression programs when using different
preprocessors

preprocessors. This table shows an increase in the decompression times when using word defini-
tion A or word definition B with zip, lzop(2), lzop(1) and gzip. Word definition C, however
shows an improvement in the average decompression time for all compression programs. Out
of all the programs, bzip2 shows the highest amount of improvement in decompression time.
It achieves an average improvement of 29.98 percent. This improvement, however does not
lead to it achieving faster decompression times than 7zip (which shows an average improve-
ment of 11.76 percent). ppmd, which achieves the slowest compression times, shows the least
amount of improvement out of the statistical compressors (5.58 percent improvement). Out of
the LZ77-based compression programs, arj achieves the highest amount of improvement in de-
compression time (15.04 percent on average). This improvement leads to arj achieving faster
decompression times than gzip for A.1 and the same decompression time as gzip for B.1. zip
shows a smaller increase in decompression time than gzip for word definition A and word defi-
nition B, however gzip shows a greater percentage of improvement for word definition C (19.33
percent on average) than zip (14.38 percent on average). This greater improvement, however
does not lead to gzip achieving faster decompression times than zip for word definition C. Its
times for word definition C are also faster than gzip’s times without the use of preprocessing.
Out of all compression programs, lzop shows the least improvement in decompression times. It
does, however, show a greater percentage of improvement than ppmd for word definition C. The
improvement in decompression time with the use of preprocessors leads to C.1 and C.2 of arj
achieving faster decompression times than gzip without the use of a preprocessor. It also leads
to C.1 and C.2 of gzip achieving faster decompression times than lzop(2) without the use of
preprocessing, C.2 of gzip achieving faster times than lzop(1) and C.1 and C.2 of lzop(1)
faster than lzop(2) without the use of preprocessing.

CHAPTER 5. WORD-BASED REPLACEMENT 125

Table 5.15 shows the average total times achieved with the use of preprocessors and the average
total times without the use of a preprocessors. The total time is calculated by the addition of
the compression time and decompression time. This is calculated for all levels of a compression
program and then the average is obtained.

Despite showing the largest amount of improvement in total time out of the LZ77-based com-
pression programs (13.91 percent on average), arj remains the slower than zip and gzip. gzip
also shows a higher percentage of improvement than zip, however zip still achieves faster times
than gzip for all six preprocessors. bzip2 shows the highest percentage of improvement in total
(43.59 percent on average). The improvement is due to the smaller files created by the pre-
processors. Most of the time for bzip2 is spent performing the BWT, which now only has to
transform smaller files. This results in much faster times for bzip2. Due to the high percentage
of improvement, bzip2 achieves faster times than ppmd for C.1 and C.2. ppmd shows the lowest
average percentage of improvement out of the statistical compressors (6.93 percent). 7zip, which
achieves the highest average times, shows a 33.16 percent improvement in total time. This leads
to it achieving faster total times for C.1 and C.2 than bzip2 without preprocessing. lzop shows
the smallest amount of improvement out of the compression programs with lzop(1) showing
greater improvement than lzop(2). lzop(1) still, however, achieves the fastest total time with
and without the use of preprocessors.

The average total time over all compression programs is improved by between 19.71 percent and
37.96 percent with the use of preprocessors. This time difference, however, is not high enough
to provide an improvement when the times for the preprocessors are included. In this case, it
results in average times which are between 14 times (for A.1) and 19 (for C.2) times greater than
the average times without the use of a preprocessor.

For all the compression programs, the different compression levels shows different amounts of
improvement which make up the averages presented in the section. Appendix E.3 investigates
the improvements in the compression and decompression times for each compression level of
the various programs.

Relationship between the Improvement in times and the reduction by the preprocessors

As shown in the previous sections, each of the six preprocessors results in a reduction in the com-
pression and decompression times. The reduction in compression and decompression time is due
to the reduction in payload size which is to be compressed. The number of different characters
in the files, however is increased. This section shows that the improvement in compression time

CHAPTER 5. WORD-BASED REPLACEMENT 126

and the improvement in decompression time are both highly correlated with the reduction in the
payload size by the preprocessor.

Comp Decomp

7zip -0.97321 -0.99161

arj -0.95968 -0.93166

bzip2 -0.99232 -0.99598

lzop -0.73988 -0.99418

ppmd -0.74455 -0.91146

lzop(1) -0.98742 -0.99251

gzip -0.99335 -0.99320

zip -0.97504 -0.98931

Table 5.16: Correlation (using Pearson correlation coefficient) between the improvement in time
and the reduction by the preprocessor

Table 5.16 shows the correlation between the improvement in compression time and the reduction
by the preprocessor and the correlation between the improvement in decompression time with
the reduction by the preprocessor using the Pearson correlation coefficient. This shows a strong
correlation between the improvement in the times for all compression programs except lzop and
ppmd for compression. lzop(1), however shows a strong correlation.

The average of all the improvements in compression times shows a negative correlation of
0.98858 with the reduction by the preprocessor. This indicates a strong linear relationship be-
tween the compression ratio achieved by the preprocessor and the improvement in compression
time. The negative coefficient means that as the ratio increases, the improvement in compression
time decreases. The average of all improvements in decompression times also shows a negative
correlation coefficient of 0.98122, indicating a strong linear relationship between the improve-
ment in decompression time and the compression ratio achieved by the preprocessor.

These results indicate that inferences about the improvement in compression and decompression
time can be made using the reduction by the preprocessor to determine the magnitude of the
improvement in compression and decompression time.

CHAPTER 5. WORD-BASED REPLACEMENT 127

Summary

The use of preprocessors leads to an improvement in compression time of up to 61.71 percent,
an improvement in decompression time of up to 39.73 percent and hence an improvement in
total time of up to 61.71 percent. The improvement in these times is due to the reduction in
the filesize by the preprocessor. The greatest improvement by the preprocessors, however, is not
greater than the time taken by the preprocessor to perform the reductions on the maillog corpus.
All the compression programs, except lzop(2), achieve an improvement in compression time,
decompression time and total time when using the preprocessors. lzop(2) achieves a negative
improvement in the average decompression time with the use of preprocessors but does achieve
a positive improvement for compression time and total time. This improvement, however is the
lowest out of all the compression programs.

Program Comp Decomp Total

lzop(1) 1 (7) 3 (7) 1 (7)

zip 3 (5) 1 (5) 2 (5)

gzip 2 (6) 4 (6) 3 (6)

arj 4 (3) 5 (2) 4 (3)

lzop(2) 6 (8) 2 (8) 5 (8)

ppmd 5 (4) 8 (4) 6 (4)

bzip2 7 (1) 7 (1) 7 (1)

7zip 8 (2) 6 (3) 8 (2)

Table 5.17: Rankings of times (improvement) for standard compression programs when using
preprocessors

Table 5.17 shows a summary of rankings of the times achieved by the compression programs
with the use of preprocessors. The ranking of the program’s average times are shown, while
the ranking of the average amount of improvement is shown in brackets. This table shows the
rankings for the compression time, decompression time and total time. For compression, de-
compression and total time, bzip2 shows the highest improvement, while lzop(2) shows the
lowest improvement. lzop(2) achieves a negative amount of improvement in decompression
time. arj achieves a higher amount of improvement than 7zip for decompression time, other-
wise the ranking are the same as the ones for compression and decompression. zip achieves a
higher ranking than gzip for the average improvement in compression time, decompression time

CHAPTER 5. WORD-BASED REPLACEMENT 128

and total time. gzip, however still achieves a faster compression time than zip despite a lower
amount of improvement. arj achieves the highest improvement out of the LZ77-based com-
pression programs. It achieves a greater improvement in compression time, decompression time
and total time than zip and gzip. This improvement, however, does not lead to arj achieving
faster times than gzip or zip on average. bzip2 and 7zip shows the highest average total times,
but achieve the highest and second-highest average improvement in total time respectively. The
statistical compressors achieve the highest amount of improvement, followed by the LZ77-based
compressors. arj, however, does achieve a higher amount of improvement than ppmd.

A.1 A.2 B.1 B.2 C.1 C.2

Program T C D T C D T C D T C D T C D T C D

lzop(1) 6 5 6 5 6 5 4 4 4 3 3 3 2 2 2 1 1 1

zip 6 5 6 5 6 5 4 3 4 3 4 3 2 1 2 1 2 1

gzip 6 6 6 4 5 4 5 4 5 3 3 3 2 2 2 1 1 1

arj 6 5 5 5 6 4 3 3 3 4 4 6 2 2 2 1 1 1

lzop(2) 3 2 6 6 6 4 5 5 3 4 4 5 2 3 2 1 1 1

ppmd 6 6 6 5 5 4 4 2 5 2 3 3 3 4 2 1 1 1

bzip2 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1

7zip 6 6 6 5 5 5 4 4 3 3 3 4 1 1 2 2 2 1

Average 6 5 6 5 6 5 4 4 4 3 3 3 2 2 2 1 1 1

T = Total Time, C = Compression Time, D = Decompression Time

Table 5.18: Preprocessors rankings for improvement in time

Table 5.18 shows a breakdown of the rankings of the improvements achieved by individual pre-
processors, detailing the improvement in compression time (C), decompression time (D) and
total time (T). The average ranking is calculated by ranking the average rankings achieved across
all programs. C.2 achieves the lowest average ranking for the improvement in total time and
compression time, while A.1 achieves the highest average ranking for improvement in total time
and compression time. C.2 shows the lowest average ranking for improvement in decompression
time, however A.2 achieves a lower ranking than A.1, which achieves the highest ranking for im-
provement in decompression time. In order of rank, the average improvement achieved by the
preprocessors is: C.2, C.1, B.2, B.1, A.1, A.2 (from most improved to least improved). These
rankings are the same as the ranking of the reduction by the preprocessors. This relationship
can also be seen by the high correlation between the improvement in the times for compression

CHAPTER 5. WORD-BASED REPLACEMENT 129

and decompression and the reduction by the preprocessors. The reduction by the preprocessor is
therefore a good predictor of the improvement in time caused by the use of a preprocessor.

5.3.3 Transfer Times

As mentioned in Section 3.2.3, the transfer time combines the results for the compression ratio
and total times into a practical metric which can be used to evaluate the performance in a given
scenario. Since the use of preprocessors generally causes the compression programs to produce
lower compression ratios and faster total times, the transfer times are improved on average. This
section investigates the improvement in transfer times on the corpus with the use of preproces-
sors.

The maillog corpus exhibits a larger average file size than the corpus of log files presented in
Chapter 3. This causes the compression payload to be larger than in Chapter 3, which in turn
leads to an increase in the transfers times. Section 3.2.3 shows that at lower transfer speeds,
the compression levels which achieve lower compression ratios (resulting in a smaller payload
to transfer) and higher total times achieve the lower transfer times, whereas at higher transfer
speeds compression levels which achieve higher compression ratios and faster times achieve
lower transfer times. Effectively the transfer times is a weighted average of the payload size and
the compression time where the weighting of the total times is always one and the weighting of
the payload size is inversely proportional to the transfer speed (its has a weighting of 1

t
where t

is the transfer speed).

Figure 5.3 shows the difference between the lowest transfer times for each program and the
lowest overall transfer time at a given transfer speed when transferring the maillog corpus without
the use of preprocessors. In this figure, ppmd shows the lowest transfer time until 261 KBps at
which point zip achieves the lowest transfer time. zip achieves the lowest transfer time until
7527 KBps, at which point lzop(1) becomes the fastest. lzop(1) initially shows the slowest
transfer times and becomes faster than lzop(2) at 527 KBps. bzip2 shows a rapid drop from
being third fastest at 10KBps to being the slowest at 251 KBps. On the corpus of log files in
Chapter 3, ppmd initially achieved the fastest time until 81 KBps at which point 7zip became the
fastest. 7zip remained the fastest until 236 KBps when zip became the fastest. zip remained
fastest until 9615 KBps. bzip2 showed a rapid drop achieving last position at 194 KBps. The
trends shown in the figure are similar results to those presented in Section 3.2.3 with the exception
of 7zip achieving the fastest time. The transitions, however occur later than in Section 3.2.3.
This is because of the larger corpus (and hence larger time to transfer the payload).

CHAPTER 5. WORD-BASED REPLACEMENT 130

Fi
gu

re
5.

3:
D

iff
er

en
ce

be
tw

ee
n

lo
w

es
tt

ra
ns

fe
rt

im
es

fo
re

ac
h

pr
og

ra
m

an
d

lo
w

es
to

ve
ra

ll
tr

an
sf

er
tim

e
fo

rt
he

m
ai

llo
g

co
rp

us

CHAPTER 5. WORD-BASED REPLACEMENT 131

Figure 5.4: Average Percentage Improvement in Transfer Time for the six preprocessors

Figure 5.4 shows the average percentage improvement in transfer times with the use of prepro-
cessors. This figure shows C.2 achieving the highest percentage of improvement for all transfer
speeds. By inspection, it can be seen that B.1 and A.2 perform comparably until 768 KBps,
while B.2 achieves a greater improvement than A.2. At its peak, the use of preprocessors shows
reductions in transfer time of up to 22.89 percent.

Figure 5.5 shows the difference between the lowest average transfer time at a given speed and
the lowest average transfer time achieved by each of the compression programs with the use of
preprocessors. This figure shows how the improvement in total time and compression ratio for
bzip2 improves its transfer times. The gap between bzip2 and the other statistical preprocessors
is improved in comparison to Figure 5.3. arj shows the greatest improvement out of the LZ77-
based compressors for both compression ratio and total time. This improvement causes the gap
between arj and the other LZ77-based compressors (zip and gzip) to be reduced.

Table 5.19 shows the transfer speeds (in KBps) at which transitions occur between the compres-
sion programs when using the six different preprocessors. It also shows the points at which the
transitions occur when the average time for the preprocessors is taken. The values which are
larger than the original values (without the use of preprocessors) are shown in bold. For all the
preprocessors, the transfer speed from which bzip2 achieves the slowest transfer time out of all

CHAPTER 5. WORD-BASED REPLACEMENT 132

Fi
gu

re
5.

5:
D

iff
er

en
ce

s
be

tw
ee

n
lo

w
es

ta
ve

ra
ge

tr
an

sf
er

tim
es

ov
er

al
lw

or
d

sc
or

es
fo

re
ac

h
al

go
ri

th
m

CHAPTER 5. WORD-BASED REPLACEMENT 133

None A.1 A.2 B.1 B.2 C.1 C.2 Average
ppmd -> zip 261 254 257 258 261 270 282 263

ppmd -> gzip 267 255 258 260 262 270 282 264
zip -> lzop(1) 7527 5311 6522 5441 5712 3561 3588 4874

lzop(2) -> lzop(1) 557 291 422 1384 411 372 379 375
bzip2 last 251 347 325 325 338 308 341 325
7zip -> zip 186 165 188 184 189 193 174 182
7zip -> gzip 194 167 187 186 190 192 174 182
gzip -> zip - 28 188 28 26 261 848 106

gzip -> lzop(1) 3673 3511 3501 3137 3253 2876 1308 3213

Table 5.19: Transfer speeds (in KBps) for different preprocessors at which transitions occurs
between the compression programs

the compression programs is improved. This is due to the great improvement in total time with
the use of preprocessors. ppmd achieves a larger amount of improvement in total time than zip

and gzip when using C.1 and C.2. This causes the transfer speed at which the transitions occur
to increase. For lower compression levels, gzip achieves a greater amount of time improvement
than zip. This causes the transition from gzip to zip to be increased. This is since gzip achieves
greater amount of improvement in total time than zip for higher compression levels (which pro-
duces the fastest transfer times at these transfer speeds) and also achieves lower compression
ratios than zip. The transfer speed at which the transition from 7zip to zip occurs is increased
due to the same reason. Generally, however, the transfer speed at which a transition occurs with
the use of preprocessors is reduced due to the reduction in filesize by the preprocessors.

Figure 5.6 shows the average percentage of improvement in the fastest transfer time by each
compression program with the use of preprocessors. This figure shows how the improvement
in compression ratio and total time for bzip2 leads to it achieving the greatest improvement in
transfer time. As the transfer speed increases, the weighting on the total time increases. Since
bzip2 achieves the greatest amount of improvement in total time, it follows that as the transfer
speed increases, so too does the improvement in transfer time. This figure also shows how the
improvement in ppmd is not high for lower transfer speeds. This is because ppmd shows an
increase in compression ratio and compression times for the higher compression levels. ppmd

achieves the lowest compression ratio, which leads to it achieving fastest transfer times due to
the lower compression ratio.

Table 5.20 shows the transfer speed at which each compression program no longer achieves a
faster transfer speed than the transfer speed without the use of compression or preprocessors.

CHAPTER 5. WORD-BASED REPLACEMENT 134

Figure 5.6: Average percentage improvement in the fastest transfer time by compression pro-
grams when using preprocessors

The compressed size is reduced by the preprocessor, which leads a smaller payload being com-
pressed. This table shows that the transfer time at which the compression programs are no longer
beneficial has increased with the use of preprocessors. The preprocessed file, however can be
transferred. This file is reduced in size already and hence shows a faster transfer time than the
transfer time without the use of preprocessors.

Table 5.21 shows the transfer time at which the transfer speed from which the compression
program with the use of preprocessors is slower than the use of no compression, transferring

A.1 A.2 B.1 B.2 C.1 C.2 None
zip 26592 27900 27932 27999 29977 30878 26722

lzop(1) 33229 33013 34513 34822 42967 44002 32208
lzop(2) 4971 7076 7159 7075 7694 7786 6192

gzip 23114 23917 23943 23910 28607 28444 21446
arj 17346 17485 17919 17630 19140 19734 14468

7zip 6164 6291 6241 6311 6564 6488 5458
bzip2 3336 3485 3551 3662 3978 4225 2325
ppmd 4113 4247 4187 4376 4336 4868 3502

Table 5.20: Transfer speed (in KBps) at which compression programs are no longer beneficial

CHAPTER 5. WORD-BASED REPLACEMENT 135

A.1 A.2 B.1 B.2 C.1 C.2 None
zip 16682 17078 16737 16376 14862 14516 26722

lzop(1) 20488 19602 20043 19693 20475 19772 32208
lzop(2) 3161 4338 4299 4146 3827 3675 6192

gzip 14680 14639 14347 13985 14141 13372 21446
arj 10899 10597 10627 10202 9339 9136 14468

7zip 4005 3961 3835 3798 3379 3176 5458
bzip2 2166 2189 2185 2204 2042 2070 2325
ppmd 2680 2675 2587 2641 2224 2305 3502

Table 5.21: Transfer speed (in KBps) at which compression programs are no longer beneficial
(preprocessed)

the preprocessed file. This table shows a reduction in the figures for all compression programs.
As expected, there is a reduction in the maximum beneficial times. This is since the use of
preprocessors reduces the filesize which results in a lower transfer time for the preprocessed file
then the original file.

Each compression level of the different compression program shows a different amount of im-
provement in transfer time. Some compression levels (such as compression level two of lzop(1))
achieve fast transfer time at high transfer speeds, while achieving slow transfer times at lower
transfer speeds. Other compression levels (such as compression level nine of bzip2) achieve
faster transfer times at low transfer speeds but slow transfer times at higher transfer speeds. Ap-
pendix E.3 investigates the improvement in transfer time for each compression level of bzip2,
gzip and zip, arj, lzop, 7zip and ppmd.

Summary

The improvement in compression ratio and total time by the preprocessors leads to an improve-
ment in transfer time. The transfer time is essentially a linear combination (or weighted average)
of the compression ratio and the total time. Section 3.2.3 showed that at lower transfer speeds,
the compression ratio achieved is more significant than the total time in determining the transfer
time. As the transfer speed increases, the significance of the total time in determining the transfer
time increases. It therefore follows that a higher improvement in compression ratio has greater
bearing on the improvement in transfer time at lower transfer speeds than the improvement in
total time, while at higher transfer speeds, the improvement in total time has a greater bearing on
the improvement in transfer time.

CHAPTER 5. WORD-BASED REPLACEMENT 136

1.2 3.6 7 8 10 21.25
GSM 28.8K 56K 64K GPRS EDGE Average

ppmd 1 (8) 1 (8) 1 (8) 1 (8) 1 (8) 1 (8) 1 (8)
7zip 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2)
bzip2 3 (7) 3 (7) 3 (7) 3 (7) 3 (7) 3 (4) 3 (6.5)
gzip 4 (5) 4 (5) 4 (5) 4 (5) 4 (5) 4 (6) 4 (5.17)
zip 5 (6) 5 (6) 5 (6) 5 (6) 5 (6) 5 (7) 5 (6.17)
arj 6 (4) 6 (4) 6 (4) 6 (4) 6 (4) 6 (5) 6 (4.17)

lzop(2) 7 (3) 7 (3) 7 (3) 7 (3) 7 (3) 7 (3) 7 (3)
lzop(1) 8 (1) 8 (1) 8 (1) 8 (1) 8 (1) 8 (1) 8 (1)
none 9 9 9 9 9 9 9

Table 5.22: Ranking of transfer time (improvement in transfer time) for compression programs
at slower compression speeds

Table 5.22 shows the rankings of the average transfer times achieved by the various compression
programs with the use of preprocessors. It shows the ranking of the average transfer times for
the maximum transfer speeds which can be achieved by GSM, a 28.8 Kbps modem, a 56.6 Kbps
modem, a 64 Kbps DIGINET line, GPRS and EDGE. These are slower transmission technolo-
gies which are used today. The rank of the improvement in transfer time is shown in brackets.
lzop(1), which achieves the slowest transfer times for these transfer speeds, achieves the high-
est amount of improvement. This is since it achieves the highest improvement in compression
ratio. At these transfer speeds, the higher compression levels of ppmd achieve the lowest trans-
fer speeds. There are no compression levels for ppmd which achieve lower compression ratios
than the optimal compression level of ppmd. Therefore, at these transfer speeds, ppmd shows the
least improvement. arj achieves a higher amount of improvement than zip and gzip for both
compression ratio and total time, so it, therefore, achieves a higher improvement in transfer time.

Table 5.23 shows the rank of the average transfer times achieved by the various compression
programs with the use of preprocessors. It shows the ranking of the average transfer times for
the maximum transfer speeds which can be achieved by 3G, 512 Kbps ADSL, 1 Mbps ADSL,
HSDPA and 4 Mbps ADSL. These are faster transmission technologies which are classified as
broadband. The rank of the improvement in transfer time is shown in brackets. For these transfer
speeds, bzip2 achieves the highest improvement in transfer time. This is since it achieves the
highest improvement in total time. 7zip shows the second least amount of improvement. This is
since at these transfer speeds, compression levels, the fast and fastest methods of 7zip achieve
the fastest times. These compression levels do not show great improvement in total time or
compression ratio.

CHAPTER 5. WORD-BASED REPLACEMENT 137

48 64 128 230.4 512
3G 512K 1M HSDPA 4M Average

ppmd 1 (8) 1 (8) 1 (8) 1 (6) 6 (3) 2 (6.6)
zip 5 (6) 5 (6) 3 (6) 2 (7) 1 (8) 3.2 (6.6)

gzip 4 (5) 4 (5) 4 (5) 3 (5) 2 (5) 3.4 (5)
arj 6 (4) 6 (4) 5 (4) 4 (4) 3 (6) 4.8 (4.4)

7zip 2 (7) 2 (7) 2 (7) 5 (8) 4 (7) 3 (7.2)
bzip2 3 (1) 3 (1) 6 (1) 6 (1) 8 (1) 5.2 (1)

lzop(2) 7 (3) 7 (3) 7 (3) 7 (3) 7 (4) 7 (3.2)
lzop(1) 8 (2) 8 (2) 8 (2) 8 (2) 5 (2) 7.4 (2)
none 9 9 9 9 9 9 (9)

Table 5.23: Ranking of transfer time (improvement in transfer time) for compression programs
at broadband connection speeds

1280 6912 12800 >6912
10BaseT 802.11a/g 100BaseT Average Average

zip 1 (8) 2 (8) 2 (8) 1.67 (8) 2 (8)
lzop(1) 4 (3) 1 (5) 1 (6) 2 (4.67) 1 (5.5)

gzip 2 (5) 3 (6) 3 (5) 2.67 (5.33) 3 (5.5)
arj 3 (4) 4 (3) 4 (3) 3.67 (3.33) 4 (3)

lzop(2) 6 (7) 5 (7) 5 (7) 5.33 (7) 5 (7)
7zip 5 (6) 6 (4) 6 (4) 5.67 (4.67) 6 (4)

ppmd 7 (2) 7 (2) 7 (2) 7 (2) 7 (2)
bzip2 8 (1) 8 (1) 8 (1) 8 (1) 8 (1)
none 9 (9) 9 (9) 9 (9) 9 (9) 9 (9)

Table 5.24: Ranking of transfer time (improvement in transfer time) for compression programs
at LAN and Wireless connection speeds

Table 5.24 shows the rank of the average transfer times achieved by the various compression
programs with the use of preprocessors. It shows the ranking of the average transfer times for the
maximum transfer speeds which can achieved by 10BaseT, 802.11a/g and 100BaseT networks.
These are the technologies used in LAN environments. The rank of the improvement in transfer
time is shown in brackets. ppmd shows the second-highest amount of improvement. This is
since at these transfer speeds, compression level one achieves the fastest transfer times for ppmd.
Compression level one of ppmd achieves a high amount of improvement in both compression
ratio and total time.

CHAPTER 5. WORD-BASED REPLACEMENT 138

A.1 A.2 B.1 B.2 C.1 C.2

zip 6 5 4 3 2 1

lzop(1) 6 5 4 3 2 1

gzip 6 4 5 3 2 1

arj 6 5 3 4 2 1

lzop(2) 6 5 3 4 2 1

7zip 6 4 5 3 1 2

ppmd 6 4 5 2 3 1

bzip2 6 5 4 3 2 1

none 6 5 4 3 2 1

Average 6 4.67 4.11 3.11 2 1.11

Table 5.25: Rank of average improvement in transfer time for standard compression programs
when using preprocessors

Table 5.25 shows the rank of the average improvement in transfer time by the preprocessors for
each compression program. For all transfer speeds, A.1 achieves the slowest average transfer
times, while C.2 achieves the fastest average transfer times. This table shows that A.1 achieves
the slowest transfer time for all compression programs, while C.2 achieves the fastest transfer
time for all compression programs except 7zip. For 7zip, C.1 achieves faster transfer times than
C.2. This is since C.1 achieves a higher improvement in total time and compression ratio than
C.2 for 7zip. The average ranking for the preprocessors is the same as the ranking as observed
for the improvement in total time (C.2, C.1, B.2, B.1, A.2, A.1). At lower transfer speeds,
however, the average ranking observed is C.2, C.1, B.2, A.2, B.1, A.1. This is the ranking
achieved for the improvement in compression ratio.

5.3.4 Memory Utilisation

The previous sections have shown that the use of preprocessors generally causes an improve-
ment in the compression ratio, compression times and decompression times which are achieved.
The memory utilisation by the compression program is also an important factor in the selec-
tion of compression programs for a particular scenario. When embedded devices are being used
(such as in wireless sensor networks [138, 139]), there is a limited amount of memory available
and the selection of a compression program is subject to the constraints for the scenario. The

CHAPTER 5. WORD-BASED REPLACEMENT 139

preprocessors transform the text files into files which contain binary characters in the place of
certain words. This leads to a greater amount of characters and hence larger symbol tables. The
files which are being compressed, however are smaller than the original files, which can lead to
an improvement in memory utilisation. This section investigates the improvement in memory
utilisation with the use of preprocessors.

Average

Log Files Maillogs

gzip 0.92 0.92

lzop(1) 1.19 1.19

zip 1.29 1.29

lzop 1.31 1.31

arj 1.41 1.41

lzop(2) 1.55 1.55

bzip2 4.57 4.57

ppmd 72.91 100.36

7zip 169.89 190.56

(a) Compression

Average

Log Files Maillogs

gzip 0.8 0.8

lzop(1) 1.05 1.05

lzop 1.05 1.05

lzop(2) 1.05 1.05

zip 1.28 1.28

arj 1.3 1.3

bzip2 2.78 2.78

7zip 19.01 20.85

ppmd 72.94 100.39

(b) Decompression

Table 5.26: Average memory utilisation (in MB) by compression programs on the two corpii

Table 5.26 shows the average amount of memory usage for all the compression levels of the
respective compression programs on the corpus of log files (presented in Section 3.2.4) and the
corpus of maillog files. The average file size of maillog corpus, as mentioned, is larger than the
corpus of log files presented in Chapter 3. This table shows differences for ppmd and 7zip. They
both show an increase in the average amount of memory usage due to the larger corpus.

A.1 A.2 B.1 B.2 C.1 C.2

7zip 0.76 0.97 1.02 1.29 3.56 4.24

lzop -0.01 -0.02 -0.02 -0.02 -0.02 -0.03

ppmd -0.95 -0.41 -0.95 -0.29 -5.85 -4.17

lzop(1) -0.02 -0.02 -0.02 -0.02 -0.02 -0.03

lzop(2) -0.01 -0.01 -0.02 -0.02 -0.02 -0.02

Table 5.27: Improvement in Memory usage for compression when using preprocessors

CHAPTER 5. WORD-BASED REPLACEMENT 140

Table 5.27 shows the average amount of improvement in the memory utilisation for compression
with the use of six preprocessors. The compression programs which are not shown do not show
a change in the amount of memory utilisation for compression with the use of preprocessors.
These improvements cause no change in the rank of the compression programs in terms of their
memory utilisation. Out of the programs shown in this table, only 7zip indicates an improvement
in the average amount of memory utilisation for compression. The rest of the programs show an
increased memory utilisation for compression. The use of word score one results in a smaller
amount of improvement than the use of word score two for all the compression programs. This
is due to a higher ratio of binary characters for word score one and the smaller filesizes for word
score two.

A.1 A.2 B.1 B.2 C.1 C.2

7zip 0 0.01 0.05 0.05 0.29 0.37

ppmd -0.95 -0.4 -0.96 -0.32 -5.83 -4.21

Table 5.28: Improvement in Memory usage for decompression when using preprocessors

Table 5.28 shows the improvement in the amount of memory usage for decompression with the
use of preprocessors. ppmd achieves a similar amount of improvement in memory usage for
decompression and compression. As is the case for compression, 7zip shows an improvement
in memory usage, while ppmd shows an increase in memory usage. Word score one also shows a
smaller amount of improvement than word score two for both ppmd and 7zip.

The difference in memory utilisation is caused by how the compression programs use memory.
For example if the compression program uses a dictionary then it depends on how much of the
dictionary gets used and if it uses a symbol table then it depends on the number of symbols which
are used. If it builds a tree of contexts, then more symbols will lead to a faster growth of the tree
and hence the maximum memory utilisation will be reached earlier.

Summary

Out of all the programs, 7zip is the only compression program which shows an improvement
in the amount of memory utilisation. This is achieved due to an improvement in the memory
utilisation by the ultra compression method since some of the files in the corpus are smaller than
the dictionary size. The files which are larger than the dictionary size show a constant amount of
memory utilisation. All the compression programs except 7zip and ppmd show the same amount

CHAPTER 5. WORD-BASED REPLACEMENT 141

of memory utilisation, on average, for the maillog corpus as they showed for the log files corpus
presented in Section 3.2.4. lzop shows an increase in memory utilisation for compression, while
ppmd shows an increase in memory utilisation for both compression and decompression. bzip2,
gzip and zip show no improvement in memory utilisation with the use of preprocessors.

5.3.5 Summary of Results

The previous sections have shown that the use of preprocessors provides an improvement in
the compression ratio and compression times. They also show that the memory usage with the
use of preprocessors, however, is increased or remains constant for all programs except 7zip.
The six preprocessors based on the six word - score combinations achieve a greater amount
of improvement than the preprocessors presented in the initial semantic investigation (which
replaced the timestamps and IP addresses with their binary equivalents).

Time Memory Overall

Ratio C D T Avg C D Avg Average

gzip 4 (4) 2 (6) 4 (6) 3 (5) 3 (5.67) 1 (2) 1 (2) 1 (2) 2.67 (3.89)

zip 5 (5) 3 (7) 1 (5) 2 (6) 2 (6) 3 (2) 4 (2) 3.5 (2) 3.5 (4.33)

lzop(1) 8 (1) 1 (5) 3 (7) 1 (7) 1.67 (6.33) 2 (4) 2 (2) 2 (3) 3.89 (3.44)

arj 6 (3) 4 (3) 5 (2) 4 (3) 4.33 (2.67) 4 (2) 5 (2) 4.5 (2) 4.94 (2.56)

lzop(2) 7 (2) 6 (8) 2 (8) 5 (8) 4.33 (8) 5 (3) 3 (2) 4 (2.5) 5.11 (4.17)

bzip2 3 (6) 7 (1) 7 (1) 7 (1) 7 (1) 6 (2) 6 (2) 6 (2) 5.33 (3)

ppmd 1 (8) 5 (4) 8 (4) 6 (4) 6.33 (4) 7 (5) 7 (3) 7 (4) 4.78 (5.33)

7zip 2 (7) 8 (2) 6 (3) 8 (2) 7.33 (2.33) 8 (1) 8 (1) 8 (1) 5.78 (3.44)

C = Compression, D = Decompression, T = Total, Avg = Average

Table 5.29: Rankings of the results (Ranking of improvement) achieved by compression pro-
grams with the use of preprocessors

Table 5.29 presents a summary of the results presented in the previous four sections. It shows
the rankings of the average results achieved with the use of preprocessors for each compres-
sion program. The table shows the average results for compression ratio, compression time,
decompression time, total time and the improvement in memory usage for compression and de-
compression. The table also shows the rankings for average improvement achieved with the use
of preprocessors for each compression program (This is shown in brackets). Overall, arj shows

CHAPTER 5. WORD-BASED REPLACEMENT 142

the greatest improvement with the use of preprocessors, followed by bzip2, while ppmd shows
the least improvement. lzop(1) achieve a greater amount of improvement than lzop(2). The
improvements, however do not lead to a change in the rankings of the compression programs
which are observed in Chapter 3.

Time Overall

Ratio Comp Decomp Total Average Average

A.1 6 6 5 6 5.67 5.84

A.2 4 5 6 5 5.33 4.67

B.1 5 4 4 4 4 4.5

B.2 3 3 3 3 3 3

C.1 2 2 2 2 2 2

C.2 1 1 1 1 1 1

Table 5.30: Rankings of improvements by the preprocessors

Table 5.30 presents the ranks of the improvements by the preprocessors for compression ratio,
compression time, decompression time and total time. C.2 shows the highest average amount of
improvement in compression ratio, compression time, decompression time and total time. This
leads to it achieving the highest overall average rank for improvement. A.1 achieves the least
amount of improvement in compression ratio, compression time and total time. A.2 achieves a
lower amount of improvement than A.1 for decompression time. Overall, however, A.1 achieves
a lower average rank for the time improvement, which leads to it achieving the lowest overall
rank for improvement. The order of the average improvement (C.2, C.1, B.2, B.1, A.2, A.1) by
the preprocessors is the same as the order of the reduction by the preprocessors.

The dictionaries used for replacement in this section are generated from the files which are being
compressed. This section has shown that the time taken by the preprocessors to perform the
word replacement is longer than the improvement in total time achieved with the use of pre-
processors. This section has shown that the use of preprocessors improves the performance of
standard compression programs.

CHAPTER 5. WORD-BASED REPLACEMENT 143

5.4 Summary

Section 5.1 discussed a method for constructing a dictionary for a file based on a given word
definition and word score. Six word - score combinations were then used to create dictionaries
which were used for word-replacement using the zero-frequency characters. The results for the
improvement in compression ratio, compression time, decompression time, total time, transfer
time and memory utilisation achieved by the different compression programs were presented
in Section 5.3. These preprocessors reduced the size of the maillog corpus by between 31.34
percent and 45.69 percent and resulted in an average improvement in compression ratio of up
to 14.82 and an average improvement in total time of up to 43.59 for standard compression
programs. A summary of these results was presented in the previous section. Through these
results, this chapter has shown that preprocessors which perform word-based replacement can
be used to exploit the semantic knowledge present in the log file. The next chapter investigates
dictionaries which be can used to compress the files that are generated from previous data and
their performance is compared to C.2 which achieves the highest average improvement of out
the preprocessors presented so far.

Chapter 6

Further Semantic Compression

The previous chapter showed that by creating a dictionary based on the frequency and length
of the words contained in a file and using it to perform word-based replacement, a significant
improvement in the performance of the compression program can be obtained. The problem
with this methodology is that the entire file needs to be parsed in order to create the dictionary.
Section 5.3.2 showed that the time taken by the preprocessor to transform the file is significantly
longer than the improvement in time achieved by the compression programs with the use of the
preprocessors. Section 5.3.3 also showed that the improvement in transfer time is also not greater
than the time taken by the preprocessor.

In order to integrate the preprocessors into the logging system, the dictionary needs to exist
before the file is logged. This means that the dictionaries presented in the previous chapter cannot
be integrated into the logging system. Dictionaries generated from past log data or dictionaries
based on the semantic knowledge present in log files can, however, be integrated into the logging
system. The previous chapter showed that C.2 achieved the greatest amount of improvement
out of the six preprocessors presented. The dictionaries investigated in this chapter are therefore
based on WSC (word-score combination) (C,2) - the WSC used by C.2.

This chapter begins by investigating the performance of the preprocessors when using the previ-
ous month’s dictionary. It then presents an analysis of the dictionaries for the corpus and presents
a methodology for the construction of a custom dictionary based on the semantic knowledge con-
tained in the log files and the knowledge known about the network. Definitions for the metrics
(compression time, decompression time, compression ratio and payload ratio) used in this chap-
ter may be found in Section 2.1.4.

144

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 145

6.1 Using the previous month’s dictionary

In order for the preprocessor to be used, it needs to use a dictionary which is created before the log
file is compressed. This means that in most scenarios, the preprocessor needs to use a previously
generated dictionary or a dictionary which is specific to the file. This section investigates using
the previous month’s dictionary to perform preprocessing on the log file.

6.1.1 Methodology

When using word-based replacement, part of the timestamp is replaced by zero-frequency char-
acters. The dictionary contains a word which refers to the month e.g. The dictionary for March
2006 contains the word "Mar". To make the previous month’s dictionary more effective this
month can be updated to form a new dictionary i.e. the word "Mar" is replaced by the word
"Apr" (since it is going to be applied to the log file for April 2006) to form a new dictionary.
These two dictionaries (before and after the alteration) are referred to as PastMonth and Past-
MonthUpdated. These dictionaries are mapped to the zero-frequency characters for the log file
to which it is going to be applied. The preprocessing is then performed in the same manner as
described in Section 5.1.4. The resulting files are then compressed and decompressed using each
of compression levels for the seven compression programs. A MD5 and SHA1 hash is performed
before and after to validate that the files before and after the transformations are the same. PM
is used to refer to the preprocessor which uses the dictionary PastMonth, while PMU is used to
refer to the preprocessors which uses the dictionary PastMonthUpdated.

6.1.2 Results and Analysis

Table 6.1 shows the compression ratios for PM and PMU. As expected, the compression ratios
for PMU are lower than the compression ratios for PM. The compression ratios for both PM and
PMU are higher than the compression ratios achieved by C.2. These compression ratios are on
average 5.29 percent lower than PM and 2.88 percent lower than PMU. This is expected, since
C.2 uses the optimal dictionary based on WSC (C,2) for the log file, whereas PM and PMU uses
dictionaries based on the optimal dictionary for the previous month.

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 146

Month C.2 PM PMU Month C.2 PM PMU

mar2006 0.54553 - - nov2006 0.54720 0.56968 0.55550

apr2006 0.54934 0.57913 0.56400 dec2006 0.55621 0.57995 0.56624

may2006 0.54868 0.58743 0.57256 jan2007 0.55434 0.56936 0.55513

jun2006 0.53226 0.56199 0.54708 feb2007 0.55380 0.57084 0.55680

jul2006 0.52342 0.55027 0.53541 mar2007 0.53982 0.57725 0.56298

aug2006 0.54116 0.56890 0.55499 apr2007 0.52794 0.56084 0.54652

sep2006 0.54924 0.57105 0.55708 may2007 0.52722 0.60896 0.59680

oct2006 0.55035 0.57307 0.55903 Average 0.54310 0.57348 0.55893

Table 6.1: Performance of own and previous month dictionaries

Program C.2 PM PMU

7zip 0.0107 0.0120 0.0127

arj 0.0361 0.0341 0.0350

bzip2 0.0152 0.0141 0.0146

gzip 0.0264 0.0247 0.0254

lzop 0.0396 0.0376 0.0383

ppmd 0.0706 0.0688 0.0691

zip 0.0264 0.0247 0.0254

lzop(1) 0.0396 0.0376 0.0383

lzop(2) 0.0240 0.0227 0.0234

ppmd(1-7) 0.0706 0.0688 0.0691

ppmd(8-15) -0.0005 0.0018 -0.0005

(a) Maximum Improvement

Program C.2 PM PMU

7zip 0.0062 0.0078 0.0082

arj 0.0197 0.0183 0.0190

bzip2 0.0077 0.0072 0.0074

gzip 0.0178 0.0166 0.0172

lzop 0.0341 0.0323 0.0330

ppmd 0.0062 0.0070 0.0061

zip 0.0178 0.0166 0.0172

lzop(1) 0.0395 0.0374 0.0381

lzop(2) 0.0234 0.0221 0.0228

ppmd(1-7) 0.0189 0.0192 0.0186

ppmd(8-15) -0.0045 -0.0034 -0.0044

(b) Average Improvement

Table 6.2: Improvement in compression ratio using PM and PMU

Table 6.2 shows the improvement in compression ratio for standard compression programs when
using C.2, PM and PMU. Table 6.2 (a) shows the maximum improvement for a compression pro-
gram, while Table 6.2 (b) shows the average amount of improvement for a compression program.
These tables show that the same rank in improvement for compression programs as seen for C.2.
All the compression programs except ppmd and 7zip show a greater improvement in compres-
sion ratio when using C.2 than PM and PMU. PMU achieves a greater amount of improvement
than PM for all compression programs except for ppmd.

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 147

6.2 Combining The Results of Other Dictionary

Using the log data from previous months to create a dictionary for the preprocessor means that
a dictionary needs to be kept for each month so that the data can be compressed. The dictionar-
ies are rather small, however if they are lost, important information such as hostnames and IP
addresses, which are replaced with zero-frequency characters will be hard to recover. A single
dictionary which can be used on all the files and achieve an acceptable improvement in compres-
sion ratio is desired. In this section, a dictionary is formed by combining the dictionaries which
were generated for each of the files in the maillog corpus in attempt to create a single dictionary
which can be used on all the files and achieve an acceptable compression ratio. This section de-
scribes the methodology used for combining the dictionaries and presents the compression ratio
achieved and the amount of improvement achieved for each compression program when using a
preprocessor based on this dictionary.

6.2.1 Methodology

To begin with, the top 256 words using WSC (C,2) for each of the log files are determined. Once
these words are determined, the words which occur in less than seven of the fifteen log files are
discarded.

Num of Dictionaries 1 2 3 4 5 6 7

Num of Words 682 389 315 275 261 245 234

Excl 2 Digit Numbers 622 329 255 215 201 185 174

Num of Dictionaries 8 9 10 11 12 13 14 15

Num of Words 220 213 201 186 178 160 146 135

Excl 2 Digit Numbers 160 153 141 126 118 100 86 75

Table 6.3: Number of Words which can be found in given amount of dictionaries

Table 6.3 shows the number of words and the number of words excluding the words which are
two digit numbers which appear in a given number of dictionaries. Seven is chosen for two
reasons: firstly it is approximately half of the dictionaries (b15

2
c = 7); and secondly for any

larger number of dictionaries, the number of words which satisfy the condition is less than 161
(which is the highest number of zero-frequency characters for all files in the corpus of mail-
logs). The resulting set of words are ranked according to their average position within the the

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 148

dictionaries. This ranking is used as the word score when selecting the words to be replaced
by zero frequency characters. Interestingly the word set formed contains a number of two digit
integers. These twp digit integers are included due to their frequency of occurrence within times-
tamp data. Using this word set, two dictionaries are formed: COMBNUM and COMBNONUM.
The first dictionary (COMBNUM) includes these integers in the dictionary, while the second dic-
tionary (COMBNONUM) does not include these integers in the dictionary. These dictionaries
also include the 12 month prefixes from the timestamp (i.e. Jan, Feb, Mar, etc.). These prefixes
achieve the second-highest word score out of all the words for their respective dictionaries, how-
ever fail the requirement of occurring in seven files. This dictionary is meant to be able to be
used as a single dictionary on all the log files and hence they all need to be included. From this
point, the name of the dictionary is used to refer to the preprocessor which uses the respective
dictionary.

6.2.2 Results and Analysis

File C.2 PMU All CombNoNum CombNum

mar2006 0.54553 - 0.57901 0.61787 0.56992

apr2006 0.54934 0.57913 0.57924 0.61541 0.57041

may2006 0.54868 0.58743 0.56736 0.60166 0.55646

jun2006 0.53226 0.56199 0.55704 0.59280 0.54786

jul2006 0.52342 0.55027 0.55474 0.58999 0.54650

aug2006 0.54116 0.56890 0.56591 0.60524 0.55922

sep2006 0.54924 0.57105 0.56804 0.60897 0.56081

oct2006 0.55035 0.57307 0.56714 0.61234 0.56023

nov2006 0.54720 0.56968 0.56743 0.61214 0.55851

dec2006 0.55621 0.57995 0.57225 0.61011 0.56641

jan2007 0.55434 0.56936 0.56529 0.61160 0.56238

feb2007 0.55380 0.57084 0.56491 0.61198 0.55714

mar2007 0.53982 0.57725 0.56511 0.61453 0.55986

apr2007 0.52794 0.56084 0.56124 0.61664 0.56079

may2007 0.52722 0.60896 0.55794 0.63663 0.60536

Average 0.54310 0.57348 0.56618 0.61053 0.56279

Table 6.4: Results for COMBNUM and COMBNONUM dictionaries

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 149

Table 6.4 shows the results for the compression ratio achieved by COMBNUM and COMB-
NONUM. ALL is a preprocessor which uses a dictionary constructed on the entire corpus using
WSC (C,2). The results for C.2, PMU and ALL are included in the table for comparison. As
expected, COMBNONUM achieves a higher compression ratio than COMBNUM for log files. On
average, COMBNONUM achieves the highest average compression ratio out of the preproces-
sors show in the table. COMBNUM, however achieves lower compression ratios than PMU for
all fifteen log files and lower compression ratios than ALL for all the log files except may2007.
This leads to COMBNUM achieving a lower average compression ratio then PMU and ALL. A
hypothesis test to determine if the paired difference between PMU and COMBNUM is significant
(i.e Using a null hypothesis of µd = 0) confirms that the paired difference is significant (p-value
0.00008). The resulting files from the preprocessors are compressed using standard compression
programs.

C.2 PMU All CombNoNum CombNum

7zip 0.0062 0.0082 0.0081 0.0110 0.0083

arj 0.0197 0.0190 0.0184 0.0174 0.0188

bzip2 0.0077 0.0074 0.0070 0.0069 0.0073

gzip 0.0178 0.0172 0.0168 0.0160 0.0171

lzop 0.0341 0.0330 0.0318 0.0260 0.0326

ppmd 0.0062 0.0061 0.0056 0.0042 0.0059

zip 0.0178 0.0172 0.0168 0.0160 0.0171

lzop(1) 0.0395 0.0381 0.0367 0.0297 0.0376

lzop(2) 0.0234 0.0228 0.0221 0.0186 0.0226

ppmd(1-7) 0.0189 0.0186 0.0177 0.0134 0.0184

ppmd(8-15) -0.0045 -0.0044 -0.0046 -0.0037 -0.0045

Table 6.5: Average improvement in compression ratio when using COMBNONUM and COMB-
NUM

Table 6.5 shows the average improvement in compression ratio for the compression programs by
COMBNONUM and COMBNUM. This table also shows the improvements in compression ratio
for the compression programs by C.2, PMU and ALL. COMBNUM shows a higher amount of
improvement than COMBNONUM for all compression programs except 7zip. COMBNUM also
achieves a higher amount of improvement than ALL for all compression programs. PMU, how-
ever, achieves a higher amount of improvement than COMBNUM for all compression programs

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 150

except 7zip. A hypothesis test to determine if the paired difference between PMU and COMB-
NUM is significant (i.e Using a null hypothesis of µd = 0) confirms that the paired difference
is significant (p-value 0.00368). On average, the improvement by PMU is 0.74 percent greater
than the improvement by COMBNUM.

6.2.3 Summary

This section has shown that COMBNUM achieves a higher compression ratio than PMU, but
achieves a lower amount of improvement in the compression ratio for the compression programs
than PMU. For all compression programs except 7zip, however, neither of these preprocessors
achieve greater improvement than C.2. PMU and COMBNUM, however, can be integrated into
the logging process since they do not depend on the log file which is being compressed. COMB-
NUM uses a single dictionary which means that many different dictionaries do not need to be
kept. Forming a dictionary such as COMBNUM also requires much analysis and does not draw
on the semantic knowledge and knowledge of the network, but rather on the results for the dictio-
naries. A more specialised dictionary can be formed by using other known semantic information
from the analysis of the log files and concatenating common phrases which always occur after
each other. The next section investigates the contents of the dictionaries and their relationship
to the semantics present in the log file. It also discusses a methodology for forming dictionaries
based on this investigation and presents the results of using those dictionaries with preprocessors.

6.3 Constructing a Custom Dictionary

The previous section showed that a single dictionary can be produced which achieves a compres-
sion ratio which is only 3.63 percent higher than the compression ratio achieved by C.2 and 0.6
percent lower than the compression ratio achieved by the dictionary formed on the entire corpus.
This section investigates the semantics present in a log and analyses the dictionaries presented
so far to form a new dictionary which achieves the lowest compression ratio on all files in the
corpus and is based on known semantics and the knowledge of the network structure involved.

6.3.1 Methodology

The initial aim is to develop a dictionary based on the known semantics and the knowledge of
the network structure involved. The second aim is to improve this dictionary so that it achieves a

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 151

lower compression ratio than C.2 on average while still using words (i.e. not including phrases).
The final aim is to include phrases into the dictionary which improve the compression ratio
achieved when using the previous dictionary.

In developing these dictionaries, the spiral model for software development, which was defined
by Boehm [140], is used. This is an iterative development model where for each successive
prototype, objectives are identified for the next prototype, the results are analysed and changes
are made to meet objectives resulting in the next prototype.

Figure 6.1: Spiral model for developing final custom dictionary

Figure 6.1 shows the spiral model which is used for the development of the final custom dic-
tionary. In the spiral model, the first prototype is constructed from a preliminary design and is
usually a scaled-down version which represents an approximation of the characteristics of the fi-
nal product. In this case, the prototype is a dictionary, referred to as MYCUSTD, which is formed
using the knowledge discovered by analysing the words which occur in the dictionaries for C.2,
COMBNUM and ALL, the network structure and the semantics from the analysis of the maillog
files (presented in Section 4.2). The preprocessor which uses this dictionary is referred to as MY-
CUST. The objective for the second prototype is for the preprocessor based on that dictionary
to achieve a lower compression ratio than C.2. The second prototype, a dictionary referred to

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 152

Num Used Freq
apr2006 160 94 228
apr2007 160 94 1
dec2006 158 94, 232, 96 3, 2, 1
feb2007 160 96 12
mar2007 159 252, 96 4, 8

Num Used Freq
may2006 160 96 8
may2007 160 96 6
nov2006 160 96 4
oct2006 160 96 2
sep2006 160 96 12

Table 6.6: Characters from the list of zero-frequency characters which are used within files of
the maillog corpus

as MYCUST2D, is formed by performing analysis of the context in which the words occur and
adjusting the dictionary accordingly. The preprocessor which uses MYCUST2D is referred to
as MYCUST2. The objective of the final prototype, which is a dictionary called MYPHRASED,
is to include phrases which improve the compression ratio achieved by a preprocessor. The fi-
nal prototype is formed by adding phrases to the dictionary which are beneficial. This includes
joining words which occur together and adding phrases which are observed in the semantic in-
vestigation whose gain is higher than words which occur in the dictionary. The gain is calculated
by multiplying the length less one and the frequency of the phrase. The preprocessor based on
MYPHRASED is referred to as MYPHRASE.

This section discusses the development of each of these three dictionaries. The first part presents
an analysis of the contents of the previous dictionaries and discusses the semantics involved. The
second part discusses how to build a dictionary based on the semantics present in the log file and
the knowledge of the network structure. The resulting dictionary is MYCUSTD. The third part
investigates the contexts in which these words occur, and discusses how this dictionary can be
improved. The resulting dictionary is MYCUST2D. The final part explores the common phrases
contained within a maillog file which can be added to the dictionary to improve the compression
ratio achieved by the preprocessor. The resulting dictionary is MYPHRASED.

Analysis of dictionaries

To determine the required size of the dictionary, the number of zero-frequency characters within
the log files need to be determined. The files in the maillog corpus contain between 158 and 161
zero-frequency characters (average of 160.13). This means that the dictionary needs to contain
at least 161 words in order to take advantage of all the zero-frequency characters present in the
log file. These characters are all contained within the character numbers 0-9, 11-31, 94, 96 and
127-254.

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 153

Table 6.6 shows the characters from the list of zero-frequency characters which are used within
certain files of the maillog. It also shows the frequency of occurrence of these characters within
that maillog. The maillog files for which all 161 zero-frequency characters are unused are omitted
from this table. This table shows that the frequency of these characters is rather low. Since two
"words" cannot be followed by each other - "words" are always separated by "non-words" - all
161 characters can be used in the dictionary mapping. When these characters do occur in the
file, they can just be escaped by doubling them. This does not result in a larger file size since the
frequency of these characters is much lower than the improvement due to word replacement using
that character. This means that the dictionary mapping can be determined prior to knowledge of
the zero-frequency characters.

The dictionary for COMBNUM (shown in the previous section) is essentially a summary of the
common words contained within the dictionaries for C.2. The contents of this dictionary show
that a dictionary can be constructed through the knowledge of the network and the knowledge
of the semantics which are present in log files. It contains elements such as: hostnames; IP
addresses; field names (such as Message-ID, to and from); process names (such as amavis and
postfix); months and numbers from the timestamp data.

The dictionary for ALL is generated using WSC (C,2) on the entire corpus of maillogs. COMB-
NUM achieves a lower compression ratio than ALL for all files except may2007. The dictio-
nary of the entire corpus (dictionary for ALL) displays a number of differences to the dictionary
for COMBNUM. Inspection shows that the followings words are not included in the dictionary
COMBNUM but are included in the dictionary for ALL:

256, 3886, 34868, 196.23.167.10, 2.5.0, 203.188.197.9, a.mx.ru.ac.za,

ADH-AES256-SHA, altair.sac.ecape.school.za, BOUNCE, cipher, conn_use, error,

established, facebookmail.com, hs.facebook.com, leopard.gc.ecape.school.za,

mx1.mail.tw.yahoo.com, mx2.mail.tw.yahoo.com, setting, TLS, TLSv1,

www.facebook.com, yahoo.com.tw

The inclusion of these words causes an improvement in the compression ratio achieved for
may2007. The analysis of the maillogs, presented in Section 4.2, shows that the following lines
can be found which include the words: 256, TLS, TLSv1, cipher, established, ADH-AES256-SHA
and setting.

• TLS connection established from hostname[IP]: TLSv1 with cipher

ADH-AES256-SHA (256/256 bits)

• setting up TLS connection from hostname[IP]

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 154

These log lines are caused by using TLS between mailservers for secure exchange of messages.
These words only start appearing in the log files from March 2007 and hence are not inluded in
the dictionary for COMBNUM.

The words which are included in the dictionary for ALL but not in the dictionary for COMBNUM

include a number of references to yahoo. mx1.mail.tw.yahoo.com, mx2.mail.tw.yahoo.com
and yahoo.com.tw are all related to yahoo, while the IP address 203.188.197.9 resolves to a
yahoo mailserver. These are only included in the may2007 dictionary and are hence not included
in the dictionary for COMBNUM.

Some of the words which are included in the dictionary for ALL, but not in the dictionary for
COMBNUM include references to facebook. These include: words such as hs.facebook.com,
www.facebook.com and facebookmail.com. The growth in the popularity of facebook, causes
these words to start appearing in the dictionaries from April 2007.

The inclusion of the words 3886 and 34868 in the dictionary for ALL is interesting. At first
glance, these numbers appear to not have any significance. They are not ports which are used for
anything and it is not clear from the semantic investigation either. These numbers are, however,
included in the dictionaries for dec2006 and jan2007, and sep2006 and oct2006 respectively.
Closer investigation reveals that the PID for postfix/qmgr did not change from 3886 between
18 December 2006 and 31 January 2007. 3886 is therefore in the dictionary for dec2006 and
jan2007. The PID for postfix/qmgr was 34848 between 18 September 2006 and 16 October
2006, therefore 34868 was included in the dictionaries for sep2006 and oct2006. This leads
these numbers to be included in the dictionary for ALL.

The words altair.sac.ecape.school.za, leopard.gc.ecape.school.za and 196.23.167.10

(which resolves to lair.moria.org) are all due to the network structure and various changes during
the course of the 15 months. altair.sac.ecape.school.za is included in the dictionaries for
the first three months, while mercury.sac.ecape.school.za is not included in the dictionaries
for the first two months. 196.23.167.10 is also only included in dictionaries for the first three
months. leopard.gc.ecape.school.za is a server on the network, however the load of mes-
sages which contain this hostname produced causes it to only appear in the dictionaries for three
of the maillog files.

Words such as those caused by the addition of TLS and those relating to facebook can be in-
cluded in the dictionary to improve the compression ratio on the newer log files and future log
files. There are a number of words which appear in all of the dictionaries for C.2 (and hence in
COMBNUM). These words include:

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 155

titania, postfix, 127.0.0.1, gauntlet.mithral.co.za, 209.67.212.202, smtpd,

mail.kc.ecape.school.za, from, localhost, disconnect, kc.ecape.school.za,

connect, message-id, qmgr, status, cleanup, active, relay, removed,

sac.ecape.school.za, delay, client, dsg.ecape.school.za, 2.6.0, queue,

nrcpt, sacschool.com, smtp, Message-ID, kwc-ntfs002.kc.ecape.school.za,

size, sent, 250, mail_id, queued, amavis, dsgschool.com, to, NOQUEUE,

Passed, delivery, connection, rejected, 10025, reject, CLEAN, Recipient,

services.async.org.za, address, Hits, RCPT, proto, vghs.ecape.school.za,

deferred, Ok, statistics, helo, MTA, ESMTP, for, mail, Operation, id, command,

ecape.school.za, saprep.ecape.school.za, saprepschool.com, async.org.za, as,

not, ms, ru.ac.za, gc.ecape.school.za, timed, virtual

These words contain hostnames and IP addresses which are used in the network and words which
have been identified during the investigation into the semantics of maillogs (presented in Section
4.2)

The dictionaries for C.2 also include a number of 2 digit numbers from 00 to 60. These numbers
are included in the dictionary since the timestamps, which occur on every line, use numbers from
00 to 60. For all the log files, all the numbers from 00 to 60 are included in the top 255 words
based on WSC (C,2). Some of these numbers, however are not included in the dictionaries for
C.2 (i.e. the top x words, where x is the number of zero-frequency characters for that log file. In
the corpus, 158 ≤ x ≤ 161)

Num Not Incl

mar2006 32 -

apr2006 31 31

may2006 32 -

jun2006 38 31

jul2006 38 -

aug2006 31 05

sep2006 29 24,30,31

oct2006 32 -

Num Not Incl

nov2006 32 31

dec2007 30 30,31

jan2007 32 -

feb2007 30 29,30,31

mar2007 32 -

apr2007 29 31

may2007 26 24,26-31

Table 6.7: Frequency of two digit numbers between 00 and 60 included in the dictionary and
numbers between 00 and 31 which are not included

Table 6.7 shows the frequency of two digit numbers between 00 and 60 which are included in
the relevant dictionaries. It also shows the numbers between 00 and 31 which are not included in

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 156

the relevant dictionaries. When the average rank of the numbers is taken, the numbers from 00
to 31 are included in the top 160 words. This is expected, since the number between 00 and 23
are hours and minutes and the numbers between 10 and 31 are dates. It is for this reason that in
the dictionaries for February, the numbers between 29 and 31 are not included the dictionary. 31
is also not included in dictionaries for April, June, September and November which are 30 day
months.

In summary, the dictionaries essentially contain a number of different elements:

1. Numbers from Timestamps and Months

2. Process names for frequent processes

3. Words which occur often within log messages

4. Hostnames and IP addresses from the network (including hostname which is performing
the logging) and common domains involved in mail exchange

The elements which are included can vary due to the network structure, the email domains which
are used often and the version of software which are used. Applications changes therefore war-
rant a review of the dictionary being used. TLS needs to be included into the dictionary. This
section has shown that there are, however, a number of elements which occur in all the log files
presented. Using the knowledge of the network and the knowledge of the semantics a dictionary
which contains the four elements discussed above can be developed.

Building a dictionary

When building a dictionary, the four elements mentioned in the previous section need to be
included.

The first element which needs to be included is the numbers from the timestamps and the twelve
months. In the dictionaries shown in the previous sections, the months were included as well as
a number of two digit numbers. The previous section showed that the top 30 numbers should be
included into the dictionary. The twelve months (Jan, Feb, Mar, ...) and the numbers from 00 to
30 are therefore included into the dictionary.

The second element which needs to be included is the process names for frequent processes. In
the syslog format, the processes which are logging are included in every log line. It is hence im-
portant to include the process names within the dictionary. Within the entire corpus, there are 40

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 157

processes which occur. postfix/smtpd, postfix/qmgr, postfix/smtp and postfix/cleanup

generate 90.04 percent of the log lines. The question is how to decide which processes need to
be included in the dictionary.

Word Num Avg Pos All CombNum

postfix 15 2 2 2

smtpd 15 7.87 7 18

qmgr 15 19.67 18 27

smtp 15 33.53 30 44

cleanup 15 23.87 21 31

amavis 15 52.13 47 55

sqlgrey 13 106.38 111 111

anvil 14 177.43 210 179

error 2 136.5 187 -

virtual 15 168.8 158 172

master 3 108 - -

scache 5 241.8 - -

verify 3 127.67 - -

dccproc 1 169 - -

clamd 1 239 - -

local 5 151.8 - -

Table 6.8: Ranking of words relating to process names in previous dictionaries

Table 6.8 shows the ranking of the words which relate to process information in the dictionaries
for the preprocessors presented so far. The average position (Avg Pos) is calculated by taking
the average of the ranking in the the top 255 entries for words in the log files based on WSC
(C,2). The column Num shows the number of log files for which the word appears in the top 255
entries. In the dictionary generation process, the "/" splits the words since it is not included in
the word definition i.e. postfix/qmgr becomes two words - postfix and qmgr. They are hence
included as separate words in the dictionary.

postfix/smtpd, postfix/qmgr, postfix/smtp, postfix/cleanup, amavis and sqlgrey: all
occur in most of the dictionaries presented. These six processes generate 96.58 percent of the
messages and individually produce at least 1.58 percent of the log messages. These processes

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 158

are therefore included in the dictionary as words. postfix is also included as a word since there
are 27 different processes which begin with postfix.

The third element which needs to be included into the dictionary is words which occur often
within log messages, These are items which relate to the semantics present in the file. The
initial semantic investigation, presented in Section 4.2, showed a number of words which need
are observe in the maillog corpus. These words are observed in the dictionaries for the various
log files. This section showed the words which can be observed for the five main processes:
postfix/smtpd, postfix/smtp, postfix/qmgr, postfix/cleanup and amavis.

The following words are observed for these processes from this section (if a word is found that
has already been listed for another process, it is omitted from the list for that process):

postfix/smtpd connect, from, disconnect, client, NOQUEUE:, reject:, RCPT, Recipient, ad-
dress, rejected, to, proto, helo, TLSv1, TLS, connection, cipher, established, ADH-AES256-
SHA, (256/256, not, found

postfix/smtp relay, delay, delays, dsn, status, certificate, verification, for, refused, Operation,
conn_use, verify

postfix/qmgr queue, active, nrcpt, size, delivery, temporarily, removed, with

amavis CLEAN, Passed, Message-ID,mail_id, Hits, queued_as

postfix/cleanup message-id

These words are included in the dictionary. Word such as “statistics” which occurs often in
the postfix/anvil process are also included in the dictionary.

There are a number of other words which occur in messages which are replaced during the
semantic investigation. Word such as “sent" and “error”, occur in a number the messages, such
as “sent more than once“ and “delivery error”, while other words such as "hostname"
and "deferred" also occur in a number of messages such as “fully-qualified hostname”,
“status=deferred“ and “Message temporarily deferred”. The word “Ok” occurs as part
of a status message e.g. “250 2.5.0 Ok”, while "queued" occurs in at the end of messages in
the form "queued as". Words such as "completed" also occur in messages such as "Requested
mail action okay, completed." The word "ESMTP" occurs for 624 178 out of the 846 239
values for the field "proto" (i.e. “proto="ESMTP"“occurs in the message). In both the amavis

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 159

process and the postfix/smtp process, words such as “MTA” can also be found in messages.
These words are also included in the dictionary.

The messages which are output include codes such as 450, 250, etc. These were originally
specified in the RFC 821 [141] (this RFC was made obsolete by RFC2821 [142] which also
specifies these codes). The two most common codes are 250 and 450 which represent “requested
mail action okay” and “requested mail action not taken” respectively. These codes are included
in the dictionary. RFC 1893 [143] (this RFC was made obsolete by RFC3463 [144] which
also defines extended error codes) and RFC 2034 [145] define extended error codes of the form
X.X.X, where the first X is either 2, 4 or 5 which represent “successfully sent”, “temporary
problem” and “permanent/fatal error” respectively. More information can be found in the RFCs.
The most common delivery status notification (dsn) codes observed in the maillog corpus are
2.0.0, 2.5.0 and 2.5.0. These are therefore included in the dictionary.

The ports 10024 and 10025 are also replaced in the postfix/smtp process. Messages such
as "Connection refused (port 10024)" are generated by the postfix/smtp process, while
messages such as "from MTA([127.0.0.1]:10025)". Due to the frequency of these ports, these
numbers are included as words in the dictionary.

The fourth element which needs to be included into the dictionary is the hostnames and IP ad-
dresses which are involved in the network. The first hostname which needs to be included is
the hostname which is performing the logging (in this case titania). In some cases there may
be more than one. If this is the case, then an analysis needs to be performed on previous log
data to determine the frequency which each host logs to the file and therefore determine which
hostnames need to be included into the dictionary. The hostnames are often observed in close
proximity to their IP addresses within the log files.

IP Hostnames

127.0.0.1 localhost, localhost.domain

146.231.128.21 elephant.ru.ac.za, a.mx.ru.ac.za

196.23.167.21 mercury.sac.ecape.school.za

196.23.167.26 mail.kc.ecape.school.za

196.23.167.44 vicky.vghs.ecape.school.za

209.67.212.202 gauntlet.mithral.co.za

Table 6.9: IP addresses and hostnames involved in the network

Table 6.9 shows the various IP addresses and their hostnames which are involved in the network.

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 160

All of these hostnames also occur in the dictionary. 10 903 188 out of 21 049 570 lines in the
corpus (51.80 percent) contain these IP addresses.

hostname[IP] Number IP occurring %

elephant.ru.ac.za[146.231.128.21] 1426 42029 3.39

a.mx.ru.ac.za[146.231.128.21] 38675 42029 92.02

mercury.sac.ecape.school.za[196.23.167.21] 1127902 1262917 89.31

mail.kc.ecape.school.za[196.23.167.26] 1307283 1551976 84.23

vicky.vghs.ecape.school.za[196.23.167.44] 132135 144813 91.25

gauntlet.mithral.co.za[209.67.212.202] 2452746 313160 76.81

Table 6.10: Lines in the corpus containing the format hostname [IP]

Table 6.10 shows the number of lines which contain the format hostname[IP]. This table shows
that a large percentage of the times the IP address occurs, it occurs in the form hostname[IP].
Therefore these are included into the dictionary. The hostnames and IP addresses are also in-
cluded into the dictionary since replacing them still achieves a large gain due to the length
of the strings. The parent domains for each hostname are included up to the third level if
they occur in the corpus i.e. for mercury.sac.ecape.school.za: sac.ecape.school.za and
ecape.school.za are included in the dictionary. When developing a dictionary, a sample of
previous log data can be inspected to determine which hostnames, email domains occur. Servers
may be on the network which do not generate a significant amount of traffic and hence are not
beneficial to the dictionary.

In this network, there are a number of email domains which are used. These include:
dsg.ecape.school.za, gc.ecape.school.za, kc.ecape.school.za,

saprep.ecape.school.za, sac.ecape.school.za, vghs.ecape.school.za, sacschool.com,

dsgschool.com and saprepschool.com. These need to be included in the dictionary since
they often occur. From observation, unknown also occurs as a hostname in many of the previous
dictionaries and is hence included in the dictionary.

There are also other mail domains which are commonly involved in email exchanges. gmail.com,
yahoo.com and hotmail.com are commonly used and hence need to be included in the dic-
tionary. The high utilisation of social networking sites such as facebook.com means that the
associated mail domains need to be included. hs.facebook.com and facebook.com are there-
fore included into the dictionary. The hostname spl-xbl.spamhaus.org occurs in the amavis,
postfix/smtp and postfix/smtpd processes. This hostname is a source of information on

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 161

SPAM which needs to be blocked. This hostname occurs often and hence also needs to be in-
cluded into the dictionary.

The dictionary containing these four elements is referred as MYCUSTD, while the preprocessor
which uses this dictionary is referred to as MYCUST.

Improving the dictionary

MYCUSTD can be improved by looking at the context of the words which occur and adding char-
acters based on these contexts. The processes, for example, are all followed by the PID, which
is contained within square brackets. The opening square bracket can, therefore, be appended to
the process name. e.g. “postfix/smtpd” becomes “postfix/smtpd[”

The word "status" appears often in messages for the postfix/smtp process. This often appears
as a field for which a value can be specified.

Number of Lines %

status 44796 1.37

status=bounced 24799 0.76

status=deferred 578426 17.63

status=deliverable 667 0.02

status=expired 1588 0.05

status=sent 2629913 80.16

status=undeliverable 583 0.02

Table 6.11: Number of lines containing a given value for status

Table 6.11 shows the different values for assigned to word "status". This table shows that 97.79
percent of the occurances are either status=sent or status=deferred. The words sent and
deferred also occur in MYCUSTD. "status=sent" accounts for 98.63 percent of the occurrences
of the word “sent”. The reduction of the dictionary on the maillog corpus can be improved by 10
705 019 bytes by including both "status=sent" and "status=deferred" instead of "status"
and “sent”. This improvement is greater than the improvement caused by any of the words with
a rank greater than 27.

Within the maillog corpus, there are 1 078 445 occurrences of the word "MTA".

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 162

Number %

MTA([127.0.0.1]:10025), 191 0.018

MTA([127.0.0.1]:10025): 1078232 99.98

MTA 22 0.002

Table 6.12: Occurrences of the word "MTA"

Table 6.12 shows the breakdown of the number occurrences of the word "MTA" within the mailog
corpus. There are 7 380 845 occurrences of 127.0.0.1 and 1 078 590 occurrences of 10025
within the maillog corpus. By replacing "MTA" in the dictionary with "MTA([127.0.0.1]:10025):",
the reduction by the dictionary on the corpus is improved by 7 545 168 bytes.

There are 1 158 090 occurrences of the word "10024" within the maillog corpus. 1 155 349
(99.76 percent) of these occurrences occur in the string "relay=127.0.0.1[127.0.0.1]:10024,".
The string "relay=127.0.0.1[127.0.0.1]" occurs 1 477 237 times in the maillog corpus. The
word "10024" can be replaced by ":10024", while the word "relay=127.0.0.1[127.0.0.1]"
can be added to the dictionary. There are still 3 991 915 occurrences of the word "127.0.0.1"
and 3 235 679 occurrences of the word "relay" in the maillog corpus. This means that it will
still beneficial for these two words to be included in the dictionary.

The results for the initial semantic investigation (contained in Appendix C) showed that the
words "mail_id", "queued_as", "Message-ID", "Hits" and "statistics" are followed by a
":", while the words "delays" and "conn_use" are followed by an "=". These characters are
therefore appended to these words resulting in an extra character being removed each time these
words are replaced.

An improved dictionary is the result of these changes to MYCUSTD. This improved dictionary
is referred to as MYCUST2D, while the preprocessor which uses this dictionary is referred to as
MYCUST2.

Adding common phrases

The previous dictionaries have just contained words from the maillog file. The initial seman-
tic investigation in Section 4.2 showed that within the maillog files there are also a number of
commonly occurring phrases. By replacing an entire phrase with a single character, a larger re-
duction is achieved than replacing a single word. Section 4.2 also showed that there are a number
of cases where two words often occur consecutively. By replacing a phrase containing these two

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 163

words with a single character, rather than replacing each word with a single characters, a larger
reduction is achieved and an extra character is available to be used for replacement. This section
investigates expanding MYCUST2D to include commonly occurring phrases.

A number of commonly occurring phrases were observed in Section 4.2. These included:
"Recipient address rejected:"; "Connection refused"; "Operation timed out";
"delivery temporarily suspended: connect to:"; "queue active"; and
"certificate verification failed for".

Within the syslog file, the process names occur in the file after the hostname which is performing
the logging. In these log files, "titania" is the only hostname. titania can therefore be
included before the process names i.e. the word "postfix/qgmr[" can be replaced by the phrase
"titania postfix/qmgr[" in the dictionary.

Section 4.2 shows that a number of log lines are generated based on the TLS connections which
are established. In MYCUST2D, there are eight different words included for these TLS con-
nections. gauntlet.mithral.co.za uses a TLS connection using the cipher ASD-AES256-SHA
(256/256 bit).

This results in the following two phrases:

• setting up TLS connection from gauntlet.mithral.co.za[209.67.212.202]

• TLS connection established from gauntlet.mithral.co.za[209.67.212.202]:

TLSv1 with cipher ADH-AES256-SHA (256/256 bits)

MYCUST2D contained the following words: "(256/256", "TLS", "TLSv1", "connection",
"established", "cipher", "setting" and "ADS-AES256-SHA". These two phrases can be in-
cluded into the dictionary instead of these eight words. This results in six extra characters which
can be used for other words or phrases.

The word "status=sent" is often followed by the message “(250 Requested mail action

okay, completed.)". The following phrase can therefore be added to the dictionary in place of
the word "status=sent":

• status=sent (250 Requested mail action okay, completed.)

The words "Passed" and "CLEAN" are included in MYCUST2D since they occur in messages for
the amavis process. These words occur successively and therefore can be concatenated into a
single phrase “Passed CLEAN” and included in the dictionary.

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 164

The words "disconnect" and "connect" are included in the dictionary since the occur for
postfix/smtpd. For all these occurrences, the string occurs after the PID and is followed by
the word "from". These words can therefore be replaced with the phrases "]: disconnect

from" and "]: connect from:" respectively. The word "connect" occurs in a number of
other places, so it is beneficial for it to remain in the dictionary.

The word "statistics:" is included in MYCUST2D since it is included in every message for
the postfix/anvil process. 66.7 percent of these messages contain the phrase "statistics:
max connection". This phrase can therefore replace the word "statistics:" in the dictionary.

By making these modifications to MYCUST2D and adding the phrases discussed, a new dictio-
nary which is referred to as MYPHRASED is formed. The preprocessor which uses this dictio-
nary is referred to as MYPHRASE.

6.3.2 Results and Analysis

Table 6.13 shows the compression ratios achieved by MYCUST, MYCUST2 and MYPHRASE

on the maillog corpus. It also shows the compression ratios achieved by C.2, COMBNUM and
PMU. As mentioned, COMBNUM achieves a lower compression ratio than PMU, however its
compression ratio is higher than the compression ratio achieved by C.2. MYCUST achieves a
lower compression ratio than COMBNUM for all files in the corpus. It also achieves a lower
compression ratio than C.2 for may2006, jan2007, feb2007 and mar2007. On average, however
it achieves a higher compression ratio than C.2 (0.77 percent higher). As expected, MYCUST2
achieves a lower compression ratio than MYCUST for all files in the corpus. The average com-
pression ratio achieved by MYCUST2 is also lower than the average compression ratio achieved
by C.2 (2.03 percent lower). For two files (mar2006 and may2007) in the corpus, however, MY-
CUST2 achieves a higher compression ratio than C.2. As expected, MYPHRASE achieves a
lower compression ratio than MYCUST2 for all files in the corpus. The use of phrases results
in a 5.07 percent lower compression ratio. It also achieves lower compression ratios than C.2
for all files in the corpus. On average, it shows a 7 percent lower compression ratio than C.2.
MYPHRASE uses a single dictionary which can be used on all the files in the corpus and is built
based on the semantics contained in the log files and the knowledge of the network structure.
This dictionary can be integrated into the logging system. The compression ratio achieved by
MYPHRASE is 11.93 percent lower than PMU and 10.25 percent lower than COMBNUM.

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 165

File C.2 PMU CombNum MyCust MyCust2 MyPhrase

mar2006 0.54553 - 0.56992 0.55935 0.55066 0.52477

apr2006 0.54934 0.57913 0.57041 0.56112 0.54765 0.51850

may2006 0.54868 0.58743 0.55646 0.54464 0.53071 0.50204

jun2006 0.53226 0.56199 0.54786 0.53292 0.51758 0.48899

jul2006 0.52342 0.55027 0.54650 0.53046 0.51506 0.48672

aug2006 0.54116 0.56890 0.55922 0.54998 0.53456 0.50153

sep2006 0.54924 0.57105 0.56081 0.55049 0.53655 0.50809

oct2006 0.55035 0.57307 0.56023 0.55150 0.53716 0.50907

nov2006 0.54720 0.56968 0.55851 0.54780 0.53206 0.50504

dec2006 0.55621 0.57995 0.56641 0.56297 0.54644 0.51468

jan2007 0.55434 0.56936 0.56238 0.55341 0.53763 0.50970

feb2007 0.55380 0.57084 0.55714 0.54531 0.52929 0.50340

mar2007 0.53982 0.57725 0.55986 0.53383 0.51687 0.49839

apr2007 0.52794 0.56084 0.56079 0.52859 0.51289 0.49592

may2007 0.52722 0.60896 0.60536 0.55715 0.53587 0.50936

Average 0.54310 0.57348 0.56279 0.54730 0.53207 0.50508

Table 6.13: Compression Ratios achieved by MYCUST, MYCUST2 and MYPHRASE on the
maillog corpus

MYPHRASE achieves the lowest compression ratio out of all the preprocessors tested so far.
The inclusion of these phrases, however does increase the ratio of binary characters and also
reduces the redundancy, therefore increasing the payload ratio achieved. The average payload
ratio achieved on the corpus is increased by 0.00928 (4.45 percent). The overall improvement is,
however, greater for MYPHRASE than MYCUST2.

Table 6.14 shows the average improvement in compression ratio achieved for the various pro-
grams when using MYCUST, MYCUST2 and MYPHRASE. PMU and COMBNUM show higher
improvements for 7zip than C.2, but lower improvements than C.2 for all the other programs.
MYCUST2 and MYPHRASE achieve higher amounts of improvement than C.2 for all com-
pression programs except ppmd. MYPHRASE achieves the greatest amount of improvement for
all compression programs except ppmd. The average improvement in compression ratio for the
seven compression programs is 0.01590 for MYCUST, 0.01678 for MYCUST2 and 0.01765 for
MYPHRASE. MYPHRASE results in an improvement of 5.18 percent over MYCUST2, while

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 166

C.2 PMU CombNum MyCust MyCust2 MyPhrase
7zip 0.00615 0.00819 0.00834 0.00883 0.00947 0.00977
arj 0.01969 0.01897 0.01880 0.01960 0.02045 0.02166

bzip2 0.00767 0.00739 0.00731 0.00808 0.00829 0.00854
gzip 0.01784 0.01719 0.01707 0.01779 0.01874 0.02001
lzop 0.03412 0.03303 0.03260 0.03381 0.03663 0.03928

ppmd 0.00618 0.00608 0.00594 0.00542 0.00512 0.00425
zip 0.01784 0.01719 0.01707 0.01779 0.01874 0.02001

lzop(1) 0.03949 0.03814 0.03763 0.03878 0.04253 0.04593
lzop(2) 0.02337 0.02282 0.02255 0.02386 0.02482 0.02598

ppmd(1-7) 0.01890 0.01862 0.01841 0.01770 0.01696 0.01565
ppmd(8-15) -0.00445 -0.00441 -0.00447 -0.00490 -0.00500 -0.00545

Table 6.14: Average improvement in compression ratio achieved for compression programs when
using MYCUST, MYCUST2 and MYPHRASE

MYCUST2 results in an improvement of 5.5 percent over MYCUST. ppmd is the only pro-
gram for which MYCUST2 achieves a higher amount of improvement in compression ratio than
MYPHRASE2. MYCUST achieves the highest amount of improvement for ppmd out of the three
preprocessors. The improvement in compression ratio for MYPHRASE is 16.99 percent higher
than improvement for MYCUST2, while the improvement for MYCUST2 is 5.99 percent higher
than the improvement by MYCUST.

6.3.3 Summary

This section used the semantic knowledge present in a log file and the knowledge of the network
to develop a dictionary which achieves the lowest compression ratio on all the files in the maillog
corpus. The analysis of the contents of the previous dictionaries revealed that all the dictionaries
essentially contained four different elements.

1. Numbers from Timestamps and Months

2. Process names for frequent processes

3. Words which occur often within log messages

4. Hostnames and IP addresses from the network (including hostname which is performing
the logging) and common domains involved in mail exchange

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 167

The aim of this section was to develop a dictionary based on the knowledge of the semantics
and the network structure which achieves a lower compression ratio than C.2 for all files in the
maillog corpus. This dictionary was developed using an iterative process based on the spiral
model for software development defined by presented by Boehm [140]. This process consisted
of three different prototypes. The first prototype was formed by using the results from analysis
of the maillog files presented in Section 4.2 and the knowledge of a network structure to form a
dictionary. The second prototype was formed by updating the words in the dictionary based on
an analysis of the contexts in which these word appear. The final prototype was formed by adding
phrases which improve the compression ratio achieved. The objective for the second prototype
was for a preprocessor based on that dictionary to achieve a lower compression ratio than C.2,
while the objective of the final prototype was to include phrases which improve the compression
ratio achieved by a preprocessor.

This section showed that these objectives were achieved. The preprocessor based on the initial
dictionary, MYCUST achieved a lower compression ratio than COMBNUM and also achieved
a lower compression ratio than C.2 for four maillog files. The preprocessor which used the
dictionary formed as the second prototype, MYCUST2, achieved a lower compression ratio than
MYCUST and achieves a lower compression ratio on thirteen out of the fifteen files in the maillog
corpus resulting in an average compression ratio which is 2.03 percent lower than C.2. The pre-
processor which used the dictionary from the final prototype, MYPHRASE, achieved the lowest
compression ratio out of all the preprocessors presented. It achieved a 5.07 percent improvement
over the compression ratio achieved by MYCUST2.

When used with compression programs, MYCUST2 achieved a higher average improvement
in compression ratio than C.2 for all compression programs except ppmd, while MYPHRASE

achieved a higher average improvement in compression ratio than MYCUST2 for all compres-
sion programs except ppmd. Out of the three prototypes, MYCUST achieved the highest average
improvement in compression ratio for ppmd. The improvement achieved by MYCUST, however
was still lower than the improvement achieved by C.2. These preprocessors did not cause an
improvement for C.2 since the compression ratios were increased due to the modified distri-
bution of characters caused by the word-replacement. On average, MYCUST2 achieved a 5.5
percent higher improvement than MYCUST, while MYPHRASE achieved a 5.18 percent higher
improvement than MYCUST2 when used with compression programs.

MYPHRASE can be easily integrated into the logging process since its dictionary does not depend
on the log file which it is being, but rather on the known semantics and the network structure.
It achieved the lowest compression ratio on all the files in the corpus and is based on known se-

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 168

mantics and the knowledge of the network structure involved. It is also a single dictionary which
means that multiple dictionaries do not need to be kept in order to not lose important information.
The next section discusses the different scenarios and which combination of preprocessors and
compression programs would be best suited to the requirements.

6.4 Scenarios

The use of preprocessors generally improves the compression ratio, compression time, decom-
pression time and transfer time achieved by the compression programs. Chapter 5 showed
that C.2 achieved the greatest improvement on average, however this chapter has showed that
MYPHRASE achieves the greatest improvement for all compression programs except ppmd. C.2
cannot be integrated into a logging system and requires the log file to be present. C.2 also
requires the log files to be parsed for the dictionary to be created. The time taken by the prepro-
cessor negates the improvement in compression time. MYPHRASE is therefore a better choice
for all scenarios where the best compression program is not ppmd.

Section 3.3 showed that for each monitoring scenario a different compression program is more
appropriate. These scenarios included:

• Filtering logs through to the central point for analysis (where latency is not important, but
there is a desire to use as little bandwidth as possible)

• Real-time monitoring (where a minimum point-to-point time is desired, using as little re-
sources as possible)

• Quick access, storing it compressed and later decompressing it for analysis (where fast
decompression is desired, but the compression time does not matter. In addition, there is a
desire to use as little bandwidth as possible)

• Low system-time-usage for compression and decompression (where fast compression and
decompression times are desired and the compression ratio does not matter)

This section investigates these scenarios and discusses which compression program - preproces-
sor combinations would be more effective in these scenarios.

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 169

6.4.1 Filtering logs through to the central point for analysis

In this scenario, the compression and decompression times are not important, however a low
compression ratio is desired. Section 3.3 shows that ppmd, 7zip and bzip2 are the best options
for this scenario and concludes that 7zip is the best option due to its low compression ratio,
fast decompression times and versatility. ppmd achieves the lowest compression ratio out of the
compression programs, however the use of preprocessors does not lead to an improvement in the
compression ratio achieved. Section 5.3.1 shows that the use of preprocessors does not improve
the lowest compression ratio achieved by ppmd (This is achieved by compression level nine).
Since the logs are going to be used for analysis at a central point, a fast decompression time
is desired. ppmd achieves the slowest decompression time out of all the compression program
which means that it is not the best choice for this scenario.

bzip2 achieves the highest compression ratio out of these three programs, however it also
achieves the highest amount of improvement in compression and decompression time. Even
with this improvement, however, bzip2 achieves higher decompression times and higher com-
pression ratios than 7zip. This means that 7zip is a better choice than bzip2 for this scenario.

MYPHRASE achieves the highest amount of improvement in compression ratio for 7zip. It also
achieves the lowest compression ratio out of the preprocessors which means that it achieves a
higher amount of improvement in compression and decompression time. With the use of prepro-
cessors, 7zip is also the only compression program which achieves a decrease in the amount of
memory utilisation. 7zip and MYPHRASE are therefore the best choices in this scenario.

6.4.2 Real-time monitoring

For real time monitoring, the lowest possible transfer time between the two points is desired. The
use of preprocessors provides an improvement in the transfer time. Section 3.3 shows that best
compression program depends on the transfer speed between the two points. For high transfer
speeds, lzop(1) achieves the fastest transfer time, while for low transfer speeds, ppmd achieves
the fastest transfer time. For low transfer speeds, the transfer time for ppmd is not improved
with the use of preprocessors. Section 5.3.3 shows that using C.2 does improve the transfer time
achieved by ppmd, however it cannot be used in a real time situation since it requires the entire log
file to be present before compression. Section 6.3 shows that C.2 achieves a greater amount of
improvement in compression ratio than MYPHRASE. Section 5.3.3 shows that at the low transfer
speeds in which ppmd achieves that fastest transfer time, the improvement in compression ratio

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 170

has a larger weighting that the improvement in total time, which means that C.2 achieves a higher
improvement in transfer time than MYPHRASE. Therefore the best choice is to use ppmd with
no preprocessor for transfer speeds below 263 KBps, zip and MYPHRASE for transfer speeds
between 263 KBps and 4874 KBps, and lzop(1) with MYPHRASE for higher transfer speeds.
For speeds above 150 Mbps, no compression and MYPHRASE should be used.

6.4.3 Quick access to stored compressed information

In this scenario, a fast decompression time is desired. Since the data is stored, a low compres-
sion ratio is also desired, however this is not the primary criterion in this scenario. Section 3.3
concludes that since the compression time does not matter, 7zip is the best option due to its
low compression ratio. lzop, gzip, arj, and zip all achieve faster decompression times than
7zip, however they also achieve higher compression ratios than 7zip. The use of a preprocessor
means that in order for the data to be accessed, it needs to be transformed. An advantage of using
the preprocessor, however, is that the decompressed file effectively has an index (the dictionary)
which can be used to improve the time to find information within the log file. If the entire file
has to be accessed, then the advantage is negated due to the time required to perform the reverse
transformation. In this case a preprocessor should not be used. gzip and zip are both better
options in this scenario than arj since arj achieves slower compression times, decompression
times and higher compression ratios than both zip and gzip. lzop achieves faster total times
than gzip and zip, however it also achieves much higher compression ratios than gzip and zip.
zip achieves the fastest decompression time and a slightly higher compression ratio than gzip,
which means it is the better choice out of the two for this scenario. The decompression time
for zip is one third of the time for 7zip, and it requires less resources for compression and
decompression than 7zip. zip and 7zip using MYPHRASE would be the two best choices for
this scenario. Since zip achieves lower decompression times, zip and MYPHRASE is the best
choice for this scenario. In the case where the entire file needs to be accessed, then MYPHRASE

should not be used.

6.4.4 Low system time usage for compression and decompression

In this scenario, low compression and decompression times are desired. Section 3.3 concludes
that lzop would be the best choice. With the use of preprocessors, lzop still achieves the lowest
total time. For quick compression and decompression without taking any regard to size, lzop

CHAPTER 6. FURTHER SEMANTIC COMPRESSION 171

would therefore undoubtedly be the best choice. Both zip and gzip also achieve fast compres-
sion and decompression times. The also achieve lower compression ratios. Since this scenario is
primarily concerned with the system time, lzop and MYPHRASE would be the best choices for
this scenario. MYPHRASE can be integrated into the logging system and hence be transparent.
If it is not integrated into the logging system then the preprocessor should not be used. In this
case, lzop and no preprocessor would be the best choices for this scenario.

6.5 Summary

The previous chapter showed that by creating a dictionary based on the frequency and length
of the words contained in the file and using it to perform word-based replacement, a significant
improvement in the performance of the compression program can be obtained. The problem with
this methodology is that the entire file needs to be parsed in order to create the dictionary. The
time to generate the dictionary and transform the file is significantly greater than the improvement
in time with the use of the preprocessor. This time can be made transparent by integrating the
preprocessor into the logging system. In order to integrate the preprocessors into the logging
system, however the dictionary needs to exist before the file is logged. This is not the case with
the dictionaries presented in the previous chapter.

In this chapter, the use of the previous month’s dictionary and a single dictionary was explored.
Section 6.1 showed that using the previous month’s dictionary does not result in a greater im-
provement than C.2. Using the previous month’s dictionary, however, still resulted in a separate
dictionary for each month. Section 6.2 combined the dictionaries for the files in the corpus into
a single dictionary which achieved a lower compression ratio than the past months when used
by a preprocessor. A single dictionary which can be formed using the knowledge of the network
and the semantics involved in the log file is desired. Section 6.3 explained how such a dictio-
nary can be constructed. When used by a preprocessor, the resulting dictionary achieved a lower
compression ratio than C.2 on all the files in the corpus.

This chapter has therefore shown that the semantics of the log file and knowledge of the network
can be used to create a dictionary which achieves a lower compression ratio than C.2. It has also
discussed which compression programs and preprocessors are most effective in the four different
monitoring scenarios.

Chapter 7

Conclusion

This thesis set out to determine how effective data compression is as a means of data reduction
and evaluate how the use of semantic knowledge can improve data compression by creating
text preprocessors which transform the file into a representation which results in lower overall
compression ratio on the file. This chapter presents a summary of the findings of this thesis.
The first section presents a summary of the work, the second section shows how the research
questions identified in Section 1.2.1 have been answered, the third section presents a reflection
on the work done and the final section presents future work which can be done based on the work
presented in this thesis.

7.1 Summary of work

Chapter 2 introduced the compression algorithms used by the different compression programs.
It also showed that word-based techniques can be used to improve the performance of standard
compression programs. At the time of writing, a detailed analysis of the performance of com-
pression programs on log file had not been performed.

Chapter 3 presented an analysis of the compression ratios, compression times, decompression
time and memory utilisation for standard compression programs on a corpus of log files. This
chapter showed that compression provides an improvement in point-to-point times for transfer
speeds of up to 207 Mbps and results in a reduction of up to 98 percent in filesize. This chapter
also selected compression programs for each four different scenarios based on these results. Sta-
tistical compressors achieved lower compression ratios, while sequential compressors achieved
faster times and used less memory.

172

CHAPTER 7. CONCLUSION 173

Chapter 4 went on to investigate the improvement in compression ratio and time achieved by
standard compression programs when combined with preprocessors which replace the times-
tamps and IP addresses with their binary equivalents. It showed that this technique resulted in
an improvement in the compression ratio and times achieved by the compression programs. This
chapter also presented an investigation into the semantic knowledge contained in a corpus of 15
months of maillog files. This analysis showed that there are a number of words which occur in
the file which could be replaced with tokens.

Chapter 5 investigated the improvements which result when using word-replacement with a dic-
tionary built based on a given word definition and word score. This resulted in a reduction in
the size of the corpus of up to 45.69 percent and an improvement in compression ratio and total
times for standard compression programs of up to 14.82 percent and 43.59 percent respectively.

The problem with the methodology used in Chapter 5 was that the entire file needed to be parsed
in order to create the dictionary. The time to generate the dictionary and transform the file was
also significantly greater than the improvement in time when using the preprocessors. Chapter 6
investigated the results when building a dictionary based on the previous month’s data. Chapter 6
also discussed the development of a single dictionary based on the known semantics present in the
log file. When used by a preprocessor, the resulting dictionary achieved the lowest compression
ratio out of all preprocessors presented.

7.2 Answering Research Questions

Section 1.2.1 identified four research questions which this thesis set out to answer. This section
shows how and where these questions have been answered within this thesis and details the
conclusions that were drawn.

7.2.1 How effective is compression in reducing the size of the log file and
how much resources (time and memory) are used by the compression
programs?

Data compression programs reduce the size of text files by between 80 and 90 percent. The
maximum compression benchmarking site shows between 91.82 percent and 97.18 reduction on
a 20MB web traffic log file using the compression programs evaluated in this thesis [49].

CHAPTER 7. CONCLUSION 174

Chapter 3 showed that compression is effective in reducing the size of the log files. It presented
tests conducted on a corpus of log files consisting of six text log files (a generic syslog, a squid ac-
cess log, an apache access log, a postfix mail log, a kernel messages log and a ftp log) and a binary
LibPCap data file. The results showed average reductions in the size of the maillog corpus of up
to 94.28 percent with the statistical compressors (ppmd, 7zip and bzip2) achieving lower com-
pression ratios than the LZ77-based compressors (zip, gzip and arj) and lzop. These results
were detailed in Section 3.2.1. The lowest time for compressing the corpus was between 0.76
seconds and 72.24 seconds across the compression programs, while the time for decompressing
the corpus was between 1.06 seconds and 23.09 seconds across the compression programs (These
results are detailed in Section 3.2.2). These programs showed a maximum memory utilisation of
between 0.9 MB and 578.09 MB of memory for compression and between 0.8 MB and 116.83
MB of memory for decompression (These results are detailed in Section 3.2.4). The statistical
compressors required a greater amount of time and memory than the LZ77-based compressors
and lzop.

The transfer time for a particular compression program is the time taken to transfer the file at a
given transfer speed from one point to another with the use of compression and decompression
at each end. This is calculated by taking the time to transfer the compressed payload at a given
transfer speed and then adding it to the time taken to compress and decompress the original
payload. Section 3.2.3 showed that for all transfer speeds up to 207.55 Mbps, there exists a
compression program which produces a faster transfer time than the time taken to transfer the
file without compression. All the compression programs showed an improvement for transfer
speeds less than 16.90 Mbps.

7.2.2 What sort of semantic knowledge exists within the log files?

Analysis of log files revealed that they contain verbose timestamps and IP addresses which can
be represented in fewer characters by using binary characters. Apart from the timestamp and
IP addresses, however, the log files also contained many other frequent patterns. Section 4.2
presented an analysis of Postfix maillogs which use the syslog format. This section revealed that
there are a number of common words and phrases contained within a maillog file. Based on
this result, preprocessors which use word replacement were developed. For these preprocessors,
dictionaries were constructed for each file in the maillog corpus based on a given word definition
and word score. This process was described in Section 5.1. Section 6.3.1 performed an analysis
of these dictionaries and a dictionary produced for the entire corpus. The analysis revealed that

CHAPTER 7. CONCLUSION 175

the following elements make up a dictionary:

1. Numbers from Timestamps and Months

2. Process names for frequent processes

3. Words which occur often within log messages

4. Hostnames and IP addresses from the network (including hostname which is performing
the logging) and common domains involved in mail exchange

These elements essentially summarise the semantic knowledge which can be exploited. Each
process showed a set of messages which it outputs with a few variable elements (such as host-
names and IP addresses). Among the variable elements, common values were also observed.
Section 6.3.1 showed that these common values can be determined using the knowledge of the
network structure. It also showed that some of words which occur within dictionaries are the
words which were seen in the analysis presented in Section 4.2.

7.2.3 Can this semantic knowledge be exploited to improve data compres-
sion?

Standard compression programs were not created to compress specific types of files, but rather
to use characteristics such as recently repeated sequences and the distribution of the characters
to compress files. Log files are rather verbose and have a set structure of outputting messages.

Section 4.2.3 showed that within the log files, there are a number of properties which can be
exploited by a preprocessor. These included:

1. Text log files contain many unused characters (zero-frequency characters)

2. Timestamps and IP addresses take up alot more space than they should

3. Certain hostnames and IP addresses occur many times within a log file

4. There are a number of other words and phrases which occur often to describe values which
vary

CHAPTER 7. CONCLUSION 176

This thesis has presented a number of different preprocessors which have exploited these prop-
erties.

Section 4.1 showed that a simple preprocessor which replaces IP address and timestamps with bi-
nary equivalents resulted in an improvement in compression ratio for all programs except bzip2.
These preprocessors reduced the file size by between 9 and 17 percent. The payload ratio on the
processed files was higher than the compression ratio on the original file, however the reduction
in the size of the file by the preprocessor caused an overall improvement in compression ratio.
This was the case for all the preprocessors presented. The average improvement in compression
ratio was 2.88 percent for T (which replaced the timestamps with their binary equivalents), while
the average improvement in compression ratio was 1.64 percent for T&IP (which replaced the
timestamps and IP addresses with their binary equivalents). The use of preprocessing also re-
sulted in an improvement in the total time. T&IP showed an improvement in total time of up to
27.9 percent, while T showed an improvement in total time of up to 22.52 percent.

Section 4.2 identified that there was a number of common words and phrases present within the
log files. Section 5.1 presented a methodology for developing six preprocessors which perform
word replacement using dictionaries based different word definitions and word scores (These
were described in Section 5.1.1 and Section 5.1.2 respectively). These preprocessors reduced the
size of a corpus of maillogs by up to 45.69 percent. Out of these six preprocessors, C.2 caused
the greatest improvement in compression ratio, compression time and decompression time on
average. Section 5.3.1 showed that the overall compression ratio is improved by up to 14.82
percent. These results also showed that the use of preprocessors is beneficial for all compression
programs except ppmd.

These preprocessors also generally resulted in an improvement in the compression and decom-
pression times achieved by the programs (due to the reduction in filesize). Section 5.3.2 showed
that the compression times were improved up to 46.91 percent, while the decompression times
were improved by up to 29.98 percent which resulted in an average improvement in total times
of up to 43.59 percent. It also showed that the improvement in compression and decompression
time is related to the reduction by the preprocessor.

The problem with these preprocessors was that they needed the entire file to exist before com-
pression. Section 6.1 discussed the use of the past month’s data and Section 6.2 discussed the
use of a combined dictionary with a preprocessor which performs word replacement. These
preprocessors, PMU and COMBNUM respectively, also achieved an improvement in the com-
pression ratio for all programs except ppmd. This improvement, however, was not greater than

CHAPTER 7. CONCLUSION 177

the improvement by C.2. Section 6.3 discussed the creation of a single dictionary based on
the semantic knowledge present in the log file. The preprocessor which used this dictionary,
MYPHRASE, achieved the highest amount of improvement out of all the preprocessors tested. It
achieved an average reduction of 49.49 percent in the size of the corpus (7 percent lower than the
reduction by C.2) and achieved an average improvement in compression ratio of 0.01765 (12.81
percent greater than the improvement achieved by C.2).

From these results, it can be concluded that the semantic knowledge can be exploited to improve
the compression ratio and the compression and decompression times achieved by all the compres-
sion programs except ppmd. The use of preprocessors, however, does improve the compression
and decompression times for ppmd.

7.2.4 In different monitoring scenarios, which compression programs are
the best choice to reduce the quantity of data?

Section 3.3 examined which compression programs were the best choices for the four different
scenarios based on the analysis of the results presented in that chapter. As mentioned in the
previous section, the use of the preprocessors improved the compression ratio and times achieved
by the compression programs. Section 6.4 examined which preprocessors were the best choices
for the different scenarios and how the improvements effected the compression programs and
hence the best choices for each scenario.

1 2

Scenario Program Preprocessor Program Preprocessor

1 7zip MyPhrase bzip2 MyPhrase

2 zip MyPhrase gzip MyPhrase

3 zip / gzip MyPhrase 7zip MyPhrase

4 lzop MyPhrase zip / gzip MyPhrase

Table 7.1: Top two compression programs and preprocessors for each of the four scenarios

Table 7.1 shows a summary of which compression programs and preprocessors were found to
be the best for the four different scenarios. It showed the top two compression programs and
preprocessors for each of the four scenarios. The scenarios are as follows:

CHAPTER 7. CONCLUSION 178

1. Filtering logs through to the central point for analysis (where latency is not important, but
there is a desire to use as little bandwidth as possible)

2. Real-time monitoring (where a minimum point-to-point time is desired, using as little re-
sources as possible)

3. Quick access, storing it compressed and later decompressing it for analysis (where fast
decompression is desired, but the compression time does not matter. In addition, there is a
desire to use as little bandwidth as possible)

4. Low system-time-usage for compression and decompression (where fast compression and
decompression times are desired and the compression ratio does not matter)

In the first scenario, a slower decompression time was desired. This means that while ppmd

achieved the lowest compression ratio, it was not considered. For the second scenario, the table
shows the generalised choices. The best choice was to use ppmd with no preprocessor for transfer
speeds below 263 KBps, zip and MYPHRASE for transfer speeds between 263 KBps and 4874
KBps, and lzop(1) with MYPHRASE for higher transfer speeds. For speeds above 150 Mbps,
no compression and MYPHRASE should be used. In the case where the entire original file needs
to be restored in the third scenario, the no preprocessor should be used. For the fourth scenario, if
the preprocessing is not integrated into the logging system then no preprocessor should be used.

7.3 Reflection

This thesis has shown that the semantic knowledge can be exploited to improve the lowest com-
pression achieved by all of the compression programs except ppmd. It has also shown that for
all compression programs, there exists at least one compression level whose compression ratio
is improved with the use of the preprocessor. This thesis has also shown that the improvement
in compression time and decompression time is related to the reduction in filesize by the pre-
processor. It has also shown that the semantic information obtained from an analysis of the
files can be used to build a dictionary which achieves a lower compression ratio when used for
word-replacement. A methodology was presented which can be used to construct a dictionary to
compress maillogs on a server based on the knowledge of the network.

Within network monitoring, there are essentially two categories where compression can be used.
These are for archival purposes and operational purposes. For archival purposes, the main issue is

CHAPTER 7. CONCLUSION 179

the compression ratio and accessibility. The use of preprocessors provides an improvement in the
compression ratio achieved by all the compression programs except ppmd. Since the time taken
to perform processing and determine the dictionaries is not an issue, any of the preprocessors
could be used. More sophisticated techniques could also be used to determine the dictionaries.
For operational use, compression can be used to improve the transfer time and the search speed.
The use of preprocessors which can be integrated into the logging system (such as MYPHRASE)
can improve the compression ratio and also provide an index to improve the search time. This
thesis has shown that the semantic knowledge can be exploited to improve the performance of
compression programs on log files.

7.4 Future work

There are a number of ways in which this work can be extended. This section expands on three
possible improvements to the work: Improving the preprocessors; analysing other types of log
data and implementing a plugin for a logging program such as rsyslog.

7.4.1 Improving the preprocessors

The speed of the preprocessors is a large issue, however these preprocessors are not optimised
and hence can be further improved. One possibility is by off-loading the string processing onto
a Nodal Core or a Graphic Processing Unit (GPU). Other possibilities include altering the way
the search and replace operates and writing the preprocessors in languages such as C/C++. Pre-
processors such as C.2 can also be integrated into the compression programs. A block based
and adaptive approach can also be investigated. Integrating word-based replacement with the re-
placement of timestamps and IP addresses with their binary equivalents can also be investigated.

7.4.2 Analysing other types of log files

There are many different types of log files which exist. This thesis has shown how the semantic
of maillogs can be exploited. Some log files, such as UNICODE log files, use different types of
encoding. UNICODE log files also contain a larger number of free characters and hence larger
dictionaries can be investigated. There are also binary files such as LibPCap files which contain
a set structure. Preprocessors can also be developed for these binary files using common values
for the fields.

CHAPTER 7. CONCLUSION 180

7.4.3 Implementing a plugin for rsyslog

rsyslog is a syslog replacement which “supports on-demand disk buffering, TCP, writing to
databases, configuring output formats, high-precision timestamps, filtering on any syslog mes-
sage part, on-the-wire message compression and the ability to convert text files to syslog” [146].
rsyslog can be extended by creating third party plugins. A rsyslog plugin can be implemented
which maintains a dictionary data structure and a plugin can be implemented which uses a cus-
tom dictionary such as MYPHRASE for word replacement.

References

[1] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: global characteristics and
prevalence. In SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMETRICS interna-

tional conference on Measurement and modeling of computer systems, pages 138–147,
New York, USA, 2003. ACM Press.

[2] News Limited. Phishers hit monster jobs site. Available Online:
http://www.australianit.news.com.au/story/0,24897,22293082-15306,00.html (Last
Accessed 29 August 2007), August 2007.

[3] J. Blau. German government pcs hacked. Available Online:
http://www.pcworld.com/article/id,136421-c,hackers/article.html (Last Accessed: 29
August 2007), August 2007.

[4] T. Bass. Intrusion detection systems and multisensor data fusion. Communications of the

ACM, 43(4):99–105, April 2000.

[5] M.R. Endsley and D. J. Garland, editors. Situational Awareness Analysis and Measure-

ment. Lawrence Erlbaum Associates, Mahwah, New Jersey, USA, 2000.

[6] S. Read-Miller and R. A. Rosenthal. Best Practices for building a Secu-
rity Operations Center. Computer Associates White Paper, Available Online:
http://www.ca.com/za/whitepapers (Last Accessed: 25 February 2006), April 2005.

[7] J. Babbin, D. Kleiman, E. Carter Jr.and J. Faircloth, and M. Burnett. Security Log Man-

agement. Syngress, Rockland, Knox County, Maine, USA, 2006.

[8] US Government. Health Insurance Portability and Accountability Act (HIPAA) of 1996.
Available Online: http://www.cms.hhs.gov/HIPAAGenInfo/Downloads/HIPAALaw.pdf
(Last Accessed: 3 June 2008), 1996.

181

REFERENCES 182

[9] US Government. Public Company Accounting Reform and Investor Protection Act
(Sarbanes-Oxley Act) of 2002. Available Online: http://frwebgate.access.gpo.gov/cgi-
bin/getdoc.cgi?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf (Last Accessed: 3
June 2008), July 2002.

[10] Republic of South Africa. Electronic Communications Act, Number 36 of 2005. Gov-
ernment Gazette, Available Online: http://www.polity.org.za (Last Accessed: 25 February
2008), April 2006.

[11] S. Read-Miller. Security Management: A New Model to Align Security
With Business Needs. Computer Associates White Paper, Available Online:
http://www.ca.com/za/whitepapers (Last Accessed: 25 February 2006), April 2005.

[12] F. Otten, B. Irwin, and H. Slay. The need for centralised, cross platform information
aggregation. In Proceedings of Information Security South Africa (ISSA) Conference,
Sandton, Johannesburg, South Africa, July 2006.

[13] A. Sah. A new architecture for managing enterprise log data. In LISA ’02: Proceedings

of the 16th USENIX conference on System administration, pages 121–132, Berkeley, CA,
USA, November 2002. USENIX Association.

[14] S. Hanning. Recovering from disaster: Implementing disaster recovery plans follow-
ing terrorism. Available Online: http://www.sans.org/reading_room/whitepapers/recovery
(Last Accessed: 25 February 2008), September 2001.

[15] B. Glass. Log monitors in BSD UNIX. In Proceedings of the BSDCon Conference, San
Francisco, Calafornia, USA, February 2002. USENIX Association.

[16] C. Siaterlis, B. Maglaris, and P. Roris. A novel approach for a distributed denial of service
detection engine. In Proceedings of 12th Annual HP OpenView University Association

(HPOVUA) Workshop, Geneva, Switzerland, July 2003.

[17] C. Lonvick. The BSD Syslog Protocol. RFC 3164 (Informational), August 2001.

[18] T. C. Bell, J. G. Clearly, and I. H. Witten. Text compression. Prentice Hall, Upper Saddle
River, New Jersey, USA, 1990.

[19] T. C. Bell, J. G. Cleary, and I. H. Witten. Modeling for text compression. ACM Computer

Surveys (CSUR), 21(4):557–591, December 1989.

REFERENCES 183

[20] R. Arnold and T. C. Bell. A corpus for the evaluation of lossless compression algorithms.
In Proceedings of IEEE Data Compression Conference (DCC), pages 201–210, Snowbird,
Utah, USA, March 1997. IEEE Computer Society.

[21] L. Glassman, D. Grinberg, C. Hibbard, L. G. Reid, and M-C van Leunen. Hector: Con-
necting words with definitions. Research Report SRC92A, Systems Research Center,
Digital Equipment Corporation, 1992.

[22] Project gutenberg ebooks. Available Online: http://www.gutenberg.org/dirs/etext00 (Last
Accessed 28 Februrary 2008), November 1999.

[23] D. Lewis. The reuters-21578 text categorization test collection, distribution 1.0. Avail-
able Online: http://www.daviddlewis.com/resources/testcollections/reuters21578 (Last
Accessed: 28 February 2008), May 2004.

[24] D. Lewis, Y. Tang, T. Rose, and Fan Li. Rcv1: A new benchmark collection for text
categorization research. Journal of Machine Learning, 5:361–397, April 2004.

[25] National Institute of Standards and Technology. Reuters corpora. Available
Online:http://trec.nist.gov/data/reuters/reuters.html (Last Accessed 28 February 2008),
September 2006.

[26] Maximum Compression Benchmarking Site. Summary of all sin-
gle file-type lossless data compression tests. Available Online:
http://www.maximumcompression.com/data/summary_sf.php (Last Accessed: 25
February 2008), 2007.

[27] R. Liska. Black_foxs benchmark. Available Online: http://blackfox.wz.cz/benchmark
(Last Accessed: 28 February 2008), February 2008.

[28] M. Mahoney. Large text compression benchmark. Available Online:
http://cs.fit.edu/mmahoney/compression (Last Accessed: 28 Februrary 2008), February
2008.

[29] S. Busch. Squeeze chart. Available Online: http://www.freehost.ag/squeezechart (Last
Accessed: 28 February 2008), February 2008.

[30] J. Gilchrist. Jeff gilchrists archive comparision test. Available Online: (Last Accessed: 28
February 2008), February 2008.

REFERENCES 184

[31] Squxe archivers chart. Available Online: http://maxcompress.narod.ru (Last Accessed: 28
Februrary 2008), November 2007.

[32] P. Deutsch. GZIP file format specification version 4.3. RFC 1952 (Informational), May
1996.

[33] PKWARE. ZIP File Format Specification. Available Online:
http://www.pkware.com/business_and_developers/developer/popups/appnote.txt (Last
Accessed: 25 February 2008), September 2006.

[34] M. Oberhumer. LZO - a real-time data compression algorithm. Available Online:
http://www.oberhumer.com/opensource/lzo (Last Accessed: 25 February 2008), October
2005.

[35] D. Shkarin. PPMd 9.1-12 System Manual Page.

[36] ARJ Technical Information. Available Online: http://datacompression.info/ArchiveFormats/arj.txt
(Last Accessed: 25 February 2008), April 1993.

[37] 7zip documentation. Documentation in p7zip package -
DOCS/MANUAL/switches/method.htm. Package Available Online:
http://downloads.sourceforge.net/p7zip/p7zip_4.43_src_all.tar.bz2 (Last Accessed:
25 February 2008), November 2005.

[38] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Research Report SRC124, Digital Systems Research Center, May 1994.

[39] A. Moffat. Special issue editorial: Lossless compression. The Computer Journal,
40(2):65–66, March 1997.

[40] Oxford english dictionary online, oxford university press. Available Online:
http://dictionary.oed.com/ (Last Accessed: 3 June 2008), June 2008.

[41] T. A. Welch. A technique for high-performance data compression. IEEE Computer,
17(6):8–19, June 1984.

[42] C. E. Shannon. A mathematical theory of communication. Bell System Technology Jour-

nal, 27:379–423 and 623–656, July and October 1948.

REFERENCES 185

[43] G. V. Cormack and R. N. S. Horspool. Data Compression Using Dynamic Markov Mod-
elling. The Computer Journal, 30(6):541–550, December 1987.

[44] R. Franceshini and A. Mukherjee. Data compression using encrypted text. In Proceedings

of the Third Forum on Research and Technology Advances in Digital Libraries (ADL),
pages 130–138, Washington DC, USA, May 1996.

[45] R. N. Horspool. Improving LZW. In Proceedings of IEEE Data Compression Conference

(DCC), pages 332–341, Snowbird, Utah, USA, April 1991.

[46] P. G. Howard. The Design and Analysis of Efficient Lossless Data Compression Systems.
PhD thesis, Department of Computer Science, Brown University, Providence, Rhode Is-
land, USA, June 1993.

[47] P. M. Long, A. I. Natsev, and J. S. Vitter. Text compression via alphabet re-representation.
In Proceedings of IEEE Data Compression Conference (DCC), pages 161–170, Snowbird,
Utah, USA, March 1997.

[48] D. Shkarin. PPM: One step to practicality. In Proceedings of 12th IEEE Data Compression

Conference (DCC), pages 202–211, Snowbird, Utah, USA, April 2002.

[49] Maximum Compression Benchmarking Site. Logfile compression test. Available Online:
http://www.maximumcompression.com/data/log.php (Last Accessed: 25 February 2008),
2007.

[50] D. A. Huffman. A method for construction of minimum-redundancy codes. Proceedings

of the Institute of Radio Engineers, 40(9):1098–1101, September 1952.

[51] P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC 1951
(Informational), May 1996.

[52] P. Elias. Universal codeword sets and representation of the integers. IEEE Transactions

on Information Theory, 21(2):194–203, March 1975.

[53] I. H. Witten, R. M. Neal, and J. G. Clearly. Arithmetic coding for data compression.
Communications of the ACM, 30(30):520–540, June 1987.

[54] J. G. Cleary and I. H. Witten. Data Compression Using Adaptive Coding and Partial String
Matching. IEEE Transactions on Communications, 32(4):396–402, April 1984.

REFERENCES 186

[55] G. N. N. Martin. Range encoding: an algorithm for removing redundancy from a digitised
message. In Video and Data Recording Conference, Southhampton, England, July 1979.

[56] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive data compres-
sion scheme. Communications of the ACM, 29(4):320–330, April 1986.

[57] S. W. Golomb. Run-length encodings. IEEE Transactions on Information Theory,
12(3):399–401, July 1966.

[58] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions of Information Theory, 23(3):337–343, May 1977.

[59] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions of Information Theory, 24(5):530–536, September 1978.

[60] J. A. Storer and T. G. Szymanski. Data compression via textual substitution. Journal of

the ACM (JACM), 29(4):928–951, October 1982.

[61] I. Pavlov. LZMA 4.43 SDK. Available Online: http://www.7zip.org/sdk.html (Last Ac-
cessed: 25 February 2008), 2005.

[62] I. Pavlov. Open Discussion - LZMA Algorithm. Available Online:
https://sourceforge.net/forum/forum.php (Last Accessed: 25 February 2008), Febru-
ary 2005.

[63] P. Deutsch and J-L. Gailly. ZLIB Compressed Data Format Specification version 3.3. RFC
1950 (Informational), May 1996.

[64] A. Moffat. Implementing the PPM Data Compression Scheme. IEEE Transactions on

Communications, 38(11):1917–1921, November 1990.

[65] I. H. Witten and T. C. Bell. The zero frequency problem: Estimating the probabilities
of novel events in adaptive text compression. IEEE Transactions on Information Theory,
37(4):1085–1094, July 1991.

[66] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length contexts for PPM. In
J.A Storer and M. Cohn, editors, Proceedings of the IEEE Data Compression Conference,
pages 52–61, Snowbird, Utah, March 1995. IEEE Computer Society Press, Los Alamitos,
California.

REFERENCES 187

[67] C. Bloom. Solving the problems of context modeling. Technical report, California Insti-
tute of Technology, March 1998.

[68] W. J. Teahan. Probability estimation for PPM. In S. Reeves and S. Cranefield, editors, Pro-

ceedings of The New Zealand Computer Science Research Students Conference, Hamilton,
New Zealand, 1995. University of Waikato.

[69] J. Abel. Improvements to the Burrows-Wheeler Compression Algorithm: After BWT
Stages. Preprint submitted for publication in ACM Transactions, 2003.

[70] B. Chapin and S. R. Tate. Higher compression from the Burrows-Wheeler transform
by modified sorting. In Proceedings of the IEEE Data Compression Conference (DCC),
pages 532–, Snowbird, Utah, USA, March 1998.

[71] P. Fenwick. Block sorting compression - final report. Technical Report 130, University of
Auckland, April 1996.

[72] D. Wheeler. An implentation of block coding. Unpublished, Available Online:
ftp://ftp.cl.cam.ac.uk/users/djw3/bred.ps (Last Accessed: 25 February 2008), October
2005.

[73] S. Deorowicz. Improvements to Burrows-Wheeler Compression Algorithm. Software:

Practice and Experience, 30(13):1465–1483, June 2000.

[74] B. Balkenhol, S. Kurtx, and Y. M. Shtarkov. Modifications of the burrows wheeler data
compression algorithm. In Proceedings of IEEE Data Compression Conference (DCC),
pages 188–197, Snowbird, Utah, USA, March 1999.

[75] B. Balkenhol and Y. Shtarkov. One attempt of a compression algorithm using the bwt. In
SFB343: Sonderforshungsbereich 343 - Diskrete Strukturen in der Mathematik (Discrete

Structures in Mathematics). Department of Mathematics, University of Bielefeld, 1999.

[76] N. J. Larsson. The context trees of block sorting compression. In Proceedings of IEEE

Data Compression Conference (DCC), pages 189–198, Snowbird, Utah, USA, March
1998.

[77] H. Kruse and A. Mukherjee. Improve text compression ratios with the burrows-wheeler
transform. In Proceedings of IEEE Data Compression Conference (DCC), pages 536–,
Snowbird, Utah, USA, March 1999.

REFERENCES 188

[78] J. Seward. bzip2 and libbzip2, version 1.0.3: A program and library for data compression.
Available Online: http://www.bzip.org/1.0.3/bzip2-manual-1.0.3.html (Last Accessed: 25
February 2008), February 2005.

[79] P. Fenwick. Experiments with a block sorting text compression algorithm. Technical
Report 111, University of Auckland, May 1995.

[80] P. Fenwick. Improvements to the block sorting text compression algorithm. Technical
Report 120, University of Auckland, August 1995.

[81] A. Anderson and S. Nilsson. A new efficient radix sort. In Proceedings of 35th Symposium

on Foundations of Computer Science, pages 714–721, 1994.

[82] P. Fenwick. Block sorting text compression. In Proceedings of the 19th Australasian

Computer Science Conference, Melbourne, Australia, February 1996.

[83] K. Sadakane. A fast algorithm for making suffix arrays and for burrows-wheeler transfor-
mation. In Proceedings of IEEE Data Compression Conference (DCC), pages 129–138,
Snowbird, Utah, USA, March 1998.

[84] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid idetification of repeated patterns
in strings, arrays and trees. In Proceedings of the fourth annual ACM Symposium on

Theory of Computing, pages 125–136, Denver, Colarado, USA, May 1972. ACM Press,
New York, USA.

[85] J. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In Pro-

ceedings of Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 360–
369, New Orleans, Louisiana, USA, January 1997.

[86] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of 1st ACM-SIAM Sympoium on Discrete Algorithms, pages 319–327, San
Francisco, California, USA, January 1990.

[87] J. Seward. On the performance of bwt sorting algorithms. In Proceedings of the IEEE Data

Compression Conference (DCC), pages 173–182, Snowbird, Utah, USA, March 2000.

[88] S. Kurtz and B. Balkenhol. Space effecient linear time computation of the burrows and
wheeler-transformation. Technical report, Technische Fakultat, University Bielefeld, Ger-
many, 1999.

REFERENCES 189

[89] H. Itoh and H. Tanaka. An efficient method for in memory construction of suffix arrays. In
String Processing and Information Retrieval Symposium, pages 81–88, Cancun, Mexico,
September 1999.

[90] T-H. Kao. Improving suffix-array construction algorithms with applications. Master’s the-
sis, Department of Computer Science, Gunma University, Maebashi City, Gunma, Japan,
2001.

[91] G. Manzini and P. Ferragina. Engineering a Lightweight Suffix Array Construction Algo-
rithm (Extended Abstract). Lecture Notes in Computer Science, Algorithms, 2461:698–
710, January 2002.

[92] J. Seward. Space-time tradeoffs in the inverse b-w transform. In Proceedings of the IEEE

Data Compression Conference (DCC), pages 439–448, Snowbird, Utah, USA, March
2001.

[93] M. Schindler. A fast block-sorting algorithm for lossless data compression. In Proceedings

of IEEE Data Compression Conference, pages 469–, Snowbird, Utah, USA, March 1997.

[94] Z. Arnavut and S. S. Maglieras. Block sorting and compression. In Proceedings of

IEEE Data Compression Conference (DCC), page 181, Snowbird, Utah, USA, 1997. IEEE
Computer Society.

[95] Z. Arnavut. Move-to-front and inversion coding. In Proceedings of IEEE Data Compres-

sion Conference (DCC), pages 193–202, Snowbird, Utah, USA, 2000.

[96] S. Deorowicz. Second step algorithms in the Burrows-Wheeler compression algorithm.
Software: Practice and Experience, 32(2):99–111, February 2002.

[97] D. S. Hirschberg and D.A. Lelewer. Efficient decoding of prefix codes. Communications

of the ACM, 23(4):449–458, April 1990.

[98] M. Mahoney. The paq data compression programs. Available Online:
http://cs.fit.edu/ mmahoney/compression/paq.html (Last Accessed: 25 February 2008),
2007.

[99] J. Schmidhuber and S. Heil. Sequential neural text compression. IEEE Transcations on

Neural Networks, 7(1):142–146, January 1996.

REFERENCES 190

[100] M. V. Mahoney. Fast text compression with neural networks. In J. Etheridge and B. Ma-
naris, editors, Proceedings of the Thirteenth International Florida Artificial Intelligence

Research Society Conference, pages 230–234, Orlando, Florida, USA, May 2000.

[101] M. Mahoney. Paq8 source code - paq8f file compressor/archiver. Available Online:
http://cs.fit.edu/ mmahoney/compression/paq8f.cpp (Last Accessed: 25 February 2008),
2006.

[102] M. V. Mahoney. Adaptive weighting of context models for lossless data compression.
Technical Report CS-2005-16, Florida Institute of Technology, USA, 2005.

[103] M Software. State of the Art Data Compression Technology - About WinRK. Avail-
able Online: http://www.msoftware.co.nz/WinRK_about.php (Last Accessed: 25 Febru-
ary 2008), 2007.

[104] The Calgary Corpus Compression Challenge. Available Online:
http://mailcom.com/challenge (Last Accessed: 25 February 2008), 2007.

[105] Compress the 100MB file enwik8 (The Hutter Prize). Available Online:
http://prize.hutter1.net/ (Last Accessed: 25 February 2008), 2007.

[106] R. N. Horspool and G. V. Cormack. Constructing word-based text compression algo-
rithms. In Proceedings of IEEE Data Compression Conference (DCC), pages 62–71,
Snowbird, Utah, USA, March 1992.

[107] A. Moffat. Word-based text compression. Software: Practices and Experience,
19(2):185–198, February 1989.

[108] J. Dvorsky, J. Pokorny, and V. Snasel. Word-based compression methods and indexing for
text retrieval systems. Lecture Notes in Computer Science, 1691:75–84, September 1999.

[109] J. Dvorsky, J. Pororny, and V. Snasel. Word compression methods for large documents. In
Proceedings of IEEE Data Compression Conference (DCC), pages 523–, Snowbird, Utah,
USA, March 1999.

[110] J. Dvorsky, J. Pororny, and V. Snasel. Word compression methods with empty words and
nonwords for text retrieval systems. In Proceedings of DATSEM, 1998.

[111] R. Y. K. Isal and A. Moffat. Word-based block-sorting text compression. In Proceedings

of 24th Australasian conference on Computer Science, volume 11 of ACM International

REFERENCES 191

Conference Proceedings Series, pages 92–99, Gold Coast, Queensland, Australia, January
2001. ACM Press.

[112] R. Y. K. Isal, A. Moffat, and A. C. H. Ngai. Enhanced word-based block sorting text
compression. Australian Computer Science Communications, 24(1):129–137, January
2002.

[113] A. Moffat and R. Y. K. Isal. Word-based text compression using the Burrows-Wheeler
transform. Information Processing and Management, 41(5):1175–1192, September 2005.

[114] E. S. de Moura, G. Navarro, and N. Ziviani. Indexing compressed text. In Proceedings

of the Fourth South American Workshop on String Processing, volume 8 of International

Informatics Series, pages 95–111. Carleton University Press, 1997.

[115] P. Skibinski, S. Grabowski, and S. Deorowicz. Revisiting dictionary-based compression.
Software: Practice and Experience, 35(15):1455–1476, December 2005.

[116] R. Franceschini, H. Kruse, N. Zhang, R. Iqbal, and A. Mukherjee. Lossless, reversible
transformation that improve text compression ratios. Technical report, University of
Florida, 2000.

[117] H. Kruse and A. Mukherjee. Preprocessing text to improve compression ratios. In Pro-

ceedings of IEEE Data Compression Conference (DCC), pages 556–, Snowbird, Utah,
USA, March 1998.

[118] H. Kruse and A. Mukherjee. Data compression using text encryption. In Proceedings of

IEEE Data Compression Conference (DCC), pages 447–, Snowbird, Utah, USA, March
1997.

[119] F. Awan and A. Mukherjee. LIPT: A lossless text transform to improve compression. In
Proceedings of International Conference on Information and Theory : Coding and Com-

puting, pages 452–460, Las Vegas, Nevada, USA, April 2001. IEEE Computer Society.

[120] F. Awan, N. Zhang, N. Motgi, R. Iqbal, and A. Mukherjee. A new text preprocessing
algorithm for bzip2 and PPM. In Proceedings of Data Compression Conference, page
481, Snowbird, Utah, USA, 2001.

[121] B. Chapin. Switching between two on-line update algortihms for higher compression of
Burrows-Wheeler transformed data. In Proceedings of IEEE Data Compression Confer-

ence (DCC), pages 183–192, Snowbird, Utah, USA, March 2000.

REFERENCES 192

[122] M. Effros. PPM performance with BWT complexity. Proceedings of the IEEE,
88(11):1703–1712, November 2000.

[123] K. Sadakane, T. Okazaki, and H. Imai. Implementing the context tree weighting method
for text compression. In Proceedings of IEEE Data Compression Conference (DCC),
pages 123–132, Snowbird, Utah, USA, March 2000.

[124] W. Sun, A. Mukherjee, and N. Zhang. A dictionary-based multi-corpora text compres-
sion system. In Proceedings of IEEE Data Compression Conference (DCC), page 448,
Snowbird, Utah, USA, March 2003.

[125] W. J. Teahan and J. G. Cleary. Models of english text. In Proceedings of IEEE Data

Compression Conference (DCC), pages 12–21, Snowbird, Utah, USA, March 1997.

[126] W. J. Teahan. Modelling English text. PhD thesis, University of Waikato, Waikato, New
Zealand, 1998.

[127] W. J. Teahan and J. G. Cleary. The entropy of english using PPM-based models. In
Proceeedings of IEEE Data Compression Conference (DCC), pages 53–62, Snowbird,
Utah, USA, March 1996.

[128] S. Grabowski. Text preprocessing for burrows-wheeler compression algorithm. In
S. Klimczak, editor, Proceedings of VII Konferencja Sieci i Systemy Informatyczne - Teo-

ria, Projekty, Wdrozenia, pages 229–239, 1999.

[129] R. Y. K. Isal and A. Moffat. Parsing strategies for BWT compression. In Proceedings

of IEEE Data Compression Conference (DCC), pages 429–438, Snowbird, Utah, USA,
March 2001.

[130] J. Abel and W. Teahan. Universal text preprocessing for data compression. ACM Trans-

actions on Computers, 54(5):497–507, May 2005.

[131] P. Skibinski. Two-level dictionary based compression. In Proceedings of IEEE Data

Compression Conference (DCC), pages 481–, Snowbird, Utah, USA, March 2005.

[132] K. Hatonen, J. F. Boulicaut, M. Klemettinen, M. Miettinen, and C. Masson. Compre-
hensive log compression with frequent patterns. Lecture Notes in Computer Science,
2737:360–370, September 2003.

REFERENCES 193

[133] P. Skibinski and J. Swacha. Fast and efficient log file compression. In Proceedings of 11th

East-European Conference on Advances in Databases and Information Systems (ADBIS),
Varna, Bulgaria, September 2007.

[134] S. Grabowski and S. Deorowicz. Web log compression. AGH Automatyka, 2007. To
appear. Preprint Available Online: http://sun.aei.polsl.pl/sdeor/pub/gd07a.pdf (Last Ac-
cessed: 25 February 2008).

[135] R. Balakrishnan and R. K. Sahoo. Lossless compression for large scale cluster logs. In
Proceedings of the 20th International Parallel and Distributed Processing Symposium

(IPDPS), pages 7–, Rhodes Island, Greece, April 2006.

[136] I. Pavlov. 7z format. Available Online: http://www.7-zip.org/7z.html (Last Accessed: 28
February 2008), 2008.

[137] R. K. Jung. Data compression/decompression method and apparatus. US Patent 5140321,
August 1992.

[138] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:
a survey. Computer Networks, 38:393–422, 2002.

[139] Christopher M. Sadler and Margaret Martonosi. Data compression algorithms for energy-
constrained devices in delay tolerant networks. In ACM Conference on Embedded Net-

worked Sensor Systems (SenSys) 2006, 2006.

[140] B. W. Boehm. A spiral model of software development and enhancement. IEEE Com-

puter, 21(5):61–72, May 1988.

[141] J. Postel. Simple Mail Transfer Protocol. RFC 821 (Standard), August 1982. Obsoleted
by RFC 2821.

[142] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard), April 2001.

[143] G. Vaudreuil. Enhanced Mail System Status Codes. RFC 1893 (Proposed Standard),
January 1996. Obsoleted by RFC 3463.

[144] G. Vaudreuil. Enhanced Mail System Status Codes. RFC 3463 (Draft Standard), January
2003. Updated by RFCs 3886, 4468, 4865, 4954.

REFERENCES 194

[145] N. Freed. SMTP Service Extension for Returning Enhanced Error Codes. RFC 2034
(Proposed Standard), October 1996.

[146] R. Gerhards. Rsyslog, the enhanced syslogd for Linux and Unix. Available Online:
http://www.rsyslog.com/ (Last Accessed: 3 June 2008), June 2008.

Appendix A

Statistical Methods

Within this thesis, there are a number of places where statistical methods have been used apart
from averages and standard deviations. This appendix aims to explain how these statistics are
calculated and why they were used.

A.1 Hypothesis Tests

In a hypothesis test, a hypothesis is defined and then this hypothesis is tested using an appropriate
statistical test. A value known as the p-value is obtained from this statistical test. This is the
observed significance level of the result from the statistical test (i.e. the probability of obtaining
a test statistic at least as extreme as the test statistic calculated from the sample). A desired level
of significance is also defined (i.e. the probability of rejecting the hypothesis when it is in fact
true). This is often denoted using α, α = 0.05 is a 95 percent confidence level. If the p-value is
smaller than α then the hypothesis is rejected, otherwise the hypothesis fails to be rejected.

A.2 Paired Difference

In cases where it is not clear whether there is a difference between the average differences then a
paired difference can be used. This test is used with Paired data (i.e. data which can be grouped
in pairs such as 2 compression ratios on the same file using different preprocessors). The t-
distribution (which approximates the normal distribution based on a parameter called the degree
of freedom) is used to verify the paired difference. To verify if there is a difference between

195

APPENDIX A. STATISTICAL METHODS 196

the average difference between samples, the difference between each of the paired samples is
calculated and then a standard t-test is performed using this data.

A.3 Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient (Also called the Pearson Product Moment Correlation) is
calculated using the values for the two variables which are being analysed. The closer the ab-
solute value of the coefficient is to 1 (perfect linear relationship), the stronger the correlation
between the two variables. The coefficient is calculated as follows:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√

[
∑n

i=1(xi − x̄)][
∑n

i=1(yi − ȳ)]

xi and yi represents each of the n observations for the two variables being analysed. x̄ and ȳ are
the averages for the values of the x and y.

A.4 Chi-Squared Goodness-of-Fit Test

This test is used to determine is a given dataset follows a specified distribution. The hypothesis
is that the data follows a specified distribution. The Chi-Squared statistic is calculated using
observed and expected values as follows:

χ2 =
n∑
i=1

(oi − ei)2

ei
, df = n− 1

oiand ei represent the observed and expected values for n values and df is the degree of freedom
for the chi-squared distribution. Using Paired data as observed and expected values, it can be
verified whether the paired variables follow the same distribution.

Appendix B

Construction of a ruleset

When analysing the semantics of the maillog files, a ruleset is constructed for the analysis tool.
This appendix explains how this ruleset was constructed and why the rules were included.

B.1 Using a single maillog file

The first obvious rules are to replace email addresses, IP addresses and hostnames. This done
using either an inner rule or an outer rule. An inner rule, however is better since there are no
spaces within an email addresses, an IP address or a hostname which means that email addresses,
IP addresses and hostnames are contained within single token. The inner rules are also run before
the outer rules. The email addresses are generally contained within <>. The following rules can
be used to replace email addresses, IP addresses and hostnames with their relevant placeholders:

O: replregex

P: <[^@]+@[^>]+>

R: <@>

O: replregex

P: (25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9][0-9]|[0-9])\.

(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9][0-9]|[0-9])\.

(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9][0-9]|[0-9])\.

(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9][0-9]|[0-9])

R: IP

197

APPENDIX B. CONSTRUCTION OF A RULESET 198

O: replregex

P: localhost|(([A-Za-z0-9\-_]+\.)+[A-Za-z]{2,3})

R: hostname

There are 11 hex digits at the beginning of some of the messages for postfix/cleanup, post-
fix/bounce, postfix/discard, postfix/local, postfix/pickup, postfix/qmgr, postfix/smtp, postfix/smtpd,
postfix/tlsmgr, postfix/virtual. These are message identifiers. The following inner rule can be
used to replace the message identifiers with a placeholder:

O: replregex

P: [0-9ABCDEF]{11}

R: #Hex#

postfix/discard, postfix/local, postfix/qmgr, postfix/smtp, postfix/smtpd and postfix/virtual pro-
duce messages which contain "to=misc", "from=misc", etc. where misc is variable text such as
email addresses. The variable text can be replaced with a placeholder by using the rfind function.
The following inner rule can be used to replace the variable text with a placeholder:

O: rfind

P: =

R: []

postfix/anvil and postfix/scache contain dates within some of their log lines. The following outer
rule can be used to replace the date with the placeholder DATE:

O: replregex

P: (Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\

((\ [1-9])|[0-9]{1,2})\ [0-9]{1,2}:[0-9]{1,2}:

[0-9]{1,2}

R: DATE

amavis is a mail virus scanner. The log messages which are outputted by this process are quite
different. Many of the messages for the process, however begin with two numbers in brackets
separated by a dash contained in brackets. The following line is an example:

APPENDIX B. CONSTRUCTION OF A RULESET 199

Aug 10 00:28:59 titania amavis[45211]: (45211-10) Passed CLEAN...

Two numbers separated by a dash and contained within brackets can can also be found in the
messages from the postfix/cleanup, postfix/qmgr and postfix/smtp processes. The following inner
rule can be used to replace the two numbers which are separated by a dash and contained within
brackets with a placeholder:

O: search

P: ([0-9]{5}-[0-9]{2})

R: (#####-##)

Further reductions can be made by using process specific rules. postfix/smtp contains a number
of lines which contain descriptions of the status which is reported. The following line is an
example of this:

#Hex#: to[] relay[] delay[] delays[] dsn[] status[] (250 2.0.0 k7ACI06C0

18260 Message accepted for delivery)

These messages can be replaced by using the following process specific outer rule:

Pr: postfix/smtp

O: replregex

P: status\[\]\ (.*)

R: status[] (message)

postfix/anvil contains a number of instances of numbers. The following process specific outer
rule can be used to replace these numbers with a placeholder:

Pr: postfix/anvil

O: replregex

P: [0-9]+

R: #

APPENDIX B. CONSTRUCTION OF A RULESET 200

The amavis process also requires a number of process specific rules since these rules do not lead
to any groupings of semantic (i.e all processed messages are still unique). The following text is
an example of one the messages for amavis after the rules are applied.

(#####-##) Passed CLEAN, [IP] [IP] <@> -> <@>, Message-ID: <@>, mail_id:

EvirT0Jc-Wu4, Hits: -2.186, queued_as: #Hex#, 7486 ms

Within this line, the values for the mail_id, the Hits and the amount of milliseconds cause the
messages to be unique. These need to be replaced with placeholders. The following process
specific inner rules can be used to replace these elements with placeholders:

Pr: amavis

O: rfind

P: :
R: {}

Pr: amavis

O: replregex

P: [0-9]+\ ms

R: # ms

There are a number of cases of multiple email addresses e.g. <@> -> <@>, <@>. This can be
reduced by adding an outer rule which replaces these with <@> -> <@>+. This outer rule is as
follows:

O: replregex

P: <@>\ ->\ (<@>,)+

R: <@> -> <@>+

B.2 Extra rules for larger corpus

A number of email addresses occur within the results using the rules from the previous section.
The following rule inner rule can be added to replace email addresses with a placeholder:

APPENDIX B. CONSTRUCTION OF A RULESET 201

O: replregex

P: [a-zA-Z0-9\-_\.]+@(localhost|(([A-Za-z0-9\-_]+\.)+

[a-zA-Z]{2,3}))

R: email

This rule needs to be added before the rule which replaces hostnames. Since it includes the reg-
ular expression used to replace the hostnames with a token. If it is added after the rule which re-
places hostname then the search criteria needs to be modified to be [a-zA-Z0-9\-_\.]+@hostname.

amavis, postfix/cleanup, postfix/qmgr, postfix/smtp and sqlgrey all include instances of three
numbers separated by dashes contained within brackets. The following rule can be used to re-
place these instances with a placeholder:

O: search

P: ([0-9]{5}-[0-9]{2}-[0-9]{1,3})

R: (#####-##-##)

Within postfix/smtpd, there are a number of instances of messages such as:

warning: Connection rate limit exceeded: 244 from hostname[IP] for

service smtp

The number (in this case 244) needs to be replaced with a placeholder. The following process
specific rule can be used to replace the number with a placeholder:

Pr: postfix/smtpd

O: replregex

P: exceeded:\ [0-9]+

R: exceeded: #

The amavis process produces a number of messages which contain INFECTED(virusname)
where virusname is the name of a virus. This following process specific rule can be used to
replace the virus name with a placeholder:

APPENDIX B. CONSTRUCTION OF A RULESET 202

Pr: amavis

O: replregex

P: INFECTED\ \(.*\),

R: INFECTED (virus),

Many of the messages for the postfix/master process contain information about processes which
have exited (50.16 percent of the messages). These messages contain the PID of the process
which has exited. The following process specific outer rule can be used to replace the PID with
a #:

Pr: postfix/master

O: replregex

P: pid\ [0-9]+

R: pid #

The sqlgrey process did not occur in the 3MB syslog file. There are a number of rules which are
necessary to determine the semantics of the sqlgrey process. The following is an example of a
message for the sqlgrey process:

2006/03/29-01:49:10 CONNECT TCP Peer: "127.0.0.1:55313" Local:

"127.0.0.1:2501"

When the rules from the previous section are run, 12.0.0.1:55313 becomes IP:55313. The port
needs to be replaced with a placeholder. The port and the date can be replaced with placeholders
using the following rules:

Pr: sqlgrey:

O: replregex

P: IP:[0-9]+

R: IP:port

Pr: sqlgrey:

O: replregex

P: (19|20)[0-9]{2}\/(0|1)[0-9]\/[0-3][0-9]\-[0-2][0-9]

:[0-5][0-9]:[0-5][0-9]

R: YYYY/MM/DD-HH:MM:SS

APPENDIX B. CONSTRUCTION OF A RULESET 203

In some of the messages produced by sqlgrey, there is an occurrence of the time contained in
brackets. This can be replaced with a placeholder using the following rule:

Pr: sqlgrey:

O: replregex

P: \([0-2][0-9]:[0-5][0-9]:[0-5][0-9]\)

R: (HH:MM:SS)

A partial IP address which refers to a class C network occurs within some the messages for
sqlgrey. This can be replaced with a placeholder by using the following rule:

Pr: sqlgrey:

O: replregex

P: (25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9][0-9]|[0-9])\.

(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9][0-9]|[0-9])\.

(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9][0-9]|[0-9])

R: C-IP

Appendix C

Analysis of Semantics

The analysis of the semantics of the log file showed a number of trends which were highlighted
in Section 4.2.2. This appendix presents the results for the top 5 processes - postfix/smtp, post-
fix/smtpd, amavis, postfix/cleanup and postfix/qmgr. More detailed results can be found in Ap-
pendix E.2.

C.1 "Handmade" analysis

The "handmade" analysis of the 3MB maillog file produced the following results:

In these results, #hex# represents a hex number, # represents a number, <> represents an email
address, hostname represents a hostname, code represents a code, explanation represents an
explanation of that code, description represents a description, IP represents an IP address, date

represents a date, mailaddress represents a mail address, and misc represents miscellaneous text.

• postfix/smtp

– host hostname said: code explanation

– host hostname refused to talk to me: code explanation

– #hex# to=<>, relay=, delay=#, dsn=#, status=sent (message) where message is:

∗ 250 dsn mailaddress Queued mail for delivery

∗ 250 dsn Ok, id=#####-# from hostname([IP]:#): BOUNCE

204

APPENDIX C. ANALYSIS OF SEMANTICS 205

∗ 250 2.0.0 Ok: queued as #hex#

∗ 254 Date discarded, id=#####-# - VIRUS: description

∗ 250 2.0.0 OK # #

∗ 250 2.0.0 Ok: queued as #hex#

– warning: peer certificate has no subject CN

– connect to hostname[IP]: message where message is:

∗ connection refused

∗ operation timed out

∗ No route to host

– certificate verification failed

• postfix/smtpd

– connect from hostname[IP]

– disconnect from hostname[IP]

– #hex# client=hostname[IP]

– NOQUEUE: reject: RCPT from hostname[IP]: code date mailaddress Recipient ad-
dress rejected: Domain not found from=<> proto=ESMTP helo=<>

• postfix/cleanup

– #hex# message-id=mailaddress

• postfix/qmgr

– #hex# from=<>, (status=expired, returned to sender) size=#, nrcpt=#, (queue active)

– #hex# to=<>, relay=none, delay=#, delays=#/#/#/#, dsn=4.4.1, status=defered (ex-

planation)

– #hex# removed

• amavis

– (#####-##) Passed CLEAN, [IP] [IP] <> -> <> Message-ID: misc Resent-Message-
ID: misc mail_id: misc Hits: #.### queued_as: misc # ms

APPENDIX C. ANALYSIS OF SEMANTICS 206

– (#####-##) Passed BAD-HEADER, [IP] [IP] <> -> <> quarantine: misc Message-ID:
misc mail_id: misc Hits: #.### queued_as: misc # ms

– (#####-##) Blocked INFECTED (), [IP] [IP] <> -> <> quarantine: misc Message-ID:
misc mail_id: misc Hits: #.### # ms

– (#####-##) Blocked SPAM, [IP] [IP] <> -> <> quarantine: misc Message-ID: misc

mail_id: misc Hits: #.### # ms

– (#####-##) Passed SPAMMY, [IP] [IP] <> -> <> quarantine: misc Message-ID: misc

mail_id: misc Hits: #.### queued_as: misc # ms

amavis also contains a number of other messages reporting information such as Perl version and
messages such as Found Decoder for The frequency of these messages is small in comparison
to the messages shown above for amavis.

These results reveals that there are defined trends which can be observed. The tool described in
the previous section was designed to automate the process used for analysing the log file on hand
so that it can be applied.

C.2 Analysis with tool

The output from the tool is first the frequency of the different processes and then the output for
each process. Each line is followed by a count for lines containing that pattern. The results for
the analysis using the tool with the rule set which is built iteratively are as follows:

• postfix/qmgr

– #Hex#: from[] status[] returned to sender 1

– #Hex#: to[] relay[] delay[] delays[] dsn[] status[] (delivery temporarily suspended:
connect to hostname[IP]: Connection refused) 2

– #Hex#: removed 2859

– #Hex#: from[] size[] nrcpt[] (queue active) 3380

• postfix/smtpd

APPENDIX C. ANALYSIS OF SEMANTICS 207

– NOQUEUE: reject: RCPT from hostname[IP]: 450 4.1.2 <@>: Recipient address
rejected: Domain not found; from[] to[] proto[] helo[] 522

– #Hex#: client[] 2766

– disconnect from hostname[IP] 3122

– connect from hostname[IP] 3124

• postfix/cleanup

– #Hex#: resent-message-id[] 4

– #Hex#: message-id[] 2889

• postfix/smtp

– #Hex#: host hostname[IP] said: 450 <@>: Recipient address rejected: Policy Rejec-
tion: Greylisting in effect. Please try again later. (in reply to RCPT TO command)
1

– #Hex#: host hostname[IP] said: 451 Temporary local problem - please try later (in
reply to end of DATA command) 1

– #Hex#: lost connection with hostname[IP] while receiving the initial server greeting
2

– #Hex#: host hostname[IP] refused to talk to me: 421 Server busy. Try later ... 2

– #Hex#: host hostname[IP] said: 451 hostname Resources temporarily unavailable.
Please try again later [#4.16.5]. (in reply to end of DATA command) 3

– certificate verification failed for hostname: num[] signed certificate in certificate
chain 3

– #Hex#: host hostname[IP] said: 451 Could not complete sender verify callout (in
reply to RCPT TO command) 3

– warning: peer certificate has no subject CN 5

– certificate verification failed for hostname: num[] has expired 6

– #Hex#: to[] orig_to[] relay[] delay[] delays[] dsn[] status[] (message) 7

– #Hex#: to[] relay[] conn_use[] delay[] delays[] dsn[] status[] (message) 7

– certificate verification failed for hostname: num[] not trusted 10

APPENDIX C. ANALYSIS OF SEMANTICS 208

– certificate verification failed for hostname: num[] to get local issuer certificate 10

– certificate verification failed for hostname: num[] to verify the first certificate 10

– connect to hostname[IP]: No route to host (port 25) 11

– certificate verification failed for hostname:certificate has expired 12

– certificate verification failed for hostname: num[] signed certificate 19

– #Hex#: host hostname[IP] said: 451 The users mailbox is full. Please try re-sending
your e-mail later. (in reply to RCPT TO command) 28

– connect to hostname[IP]: Operation timed out (port 25) 96

– connect to hostname[IP]: Connection refused (port 25) 395

– #Hex#: to[] relay[] delay[] delays[] dsn[] status[] (message) 3440

• amavis

– (#####-##) Passed CLEAN, [IP] [IP] <@> -> <@>+ Message-ID{} Resent-Message-
ID{} mail_id{} Hits{} queued_as{} # ms 2

– (#####-##) Passed BAD-HEADER, [IP] [IP] <@> -> <@>+ quarantine{} Message-
ID{} mail_id{} Hits{} queued_as{} # ms 6

– (#####-##) Blocked INFECTED (hostnametion-157), [IP] [IP] <@> -> <@>+ quar-
antine{} Message-ID{} mail_id{} Hits{} # ms 6

– (#####-##) Blocked INFECTED (Win32{} [Wrm]), [IP] [IP] <@> -> <@>+ quar-
antine{} Message-ID{} mail_id{} Hits{} # ms 10

– (#####-##) Passed SPAMMY, [IP] [IP] <@> -> <@>+ Message-ID{} mail_id{}
Hits{} queued_as{} # ms 14

– (#####-##) Blocked SPAM, [IP] [IP] <@> -> <@>+ quarantine{} Message-ID{}
mail_id{} Hits{} # ms 35

– (#####-##) Passed CLEAN, [IP] [IP] <@>, Message-ID{} mail_id{} Hits{} queued_as{}
ms 40

– (#####-##) Passed CLEAN, <@> -> <@>+ Message-ID{} mail_id{} Hits{} queued_as{}
ms 52

– (#####-##) Passed CLEAN, [IP] [IP] <@> -> <@>+ Message-ID{} mail_id{} Hits{}
queued_as{} # ms 1224

APPENDIX C. ANALYSIS OF SEMANTICS 209

These results are similar to the ones shown in the "handmade" analysis. This shows that the hand
made analysis can be replicated with the use of the tool and a rule set which is built up iteratively.

C.3 Analysing the larger corpus

The results on the larger corpus using the augmented rule set are as follows:

These results only show patterns which have more than 1000 occurrences.

• postfix/qmgr

– #Hex#: from[] status[] returned to sender 1588

– #Hex#: to[] relay[] delay[] status[] (delivery temporarily suspended: connect to host-
name[IP]: Operation timed out) 2661

– #Hex#: to[] relay[] delay[] status[] (delivery temporarily suspended: lost connection
with hostname[IP] while sending message body) 4343

– #Hex#: to[] relay[] delay[] status[] (delivery temporarily suspended: connect to host-
name[IP]: Connection refused) 5400

– #Hex#: to[] relay[] delay[] status[] (delivery temporarily suspended: connect to host-
name[IP]: server refused to talk to me: 421 Insufficient System Storage.(IMail 7.07)
) 6098

– #Hex#: to[] relay[] delay[] delays[] dsn[] status[] (delivery temporarily suspended:
connect to hostname[IP]: Connection refused) 7886

– #Hex#: to[] relay[] delay[] delays[] dsn[] status[] (delivery temporarily suspended:
connect to hostname[IP]: No route to host) 16792

– #Hex#: to[] relay[] delay[] delays[] dsn[] status[] (delivery temporarily suspended:
connect to IP[IP]: Connection refused) 55848

– #Hex#: to[] relay[] delay[] delays[] dsn[] status[] (delivery temporarily suspended:
connect to hostname[IP]: Operation timed out) 65344

– #Hex#: removed 2077468

– #Hex#: from[] size[] nrcpt[] (queue active) 2457350

• postfix/smtpd

APPENDIX C. ANALYSIS OF SEMANTICS 210

– timeout after CONNECT from hostname[IP] 1017

– NOQUEUE: reject: RCPT from hostname[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; Dynamic/Residential IP range listed by NJABL
dynablock - http://hostname/hostnamel; from[] to[] proto[] helo[] 1041

– NOQUEUE: reject: RCPT from hostname[IP]: 450 4.7.1 <@>: Recipient address
rejected: Throttling too many connections from new source - Try again later.; from[]
to[] proto[] helo[] 1083

– too many errors after RCPT from unknown[IP] 1088

– NOQUEUE: reject: RCPT from hostname[IP]: 450 4.1.2 <@>: Recipient address
rejected: Malformed DNS server reply; from[] to[] proto[] helo[] 1181

– warning: malformed domain name in resource data of MX record for hostname: 1206

– warning: valid_hostname: empty hostname 1220

– NOQUEUE: reject: RCPT from unknown[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; Dynamic/Residential IP range listed by NJABL
dynablock - http://hostname/hostnamel; from[] to[] proto[] helo[] 1223

– NOQUEUE: reject: RCPT from hostname[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; Escalated Listing (Spam or Spam Support) See:
http://hostname/hostnameml?IP; from[] to[] proto[] helo[] 1246

– lost connection after MAIL from hostname[IP] 1497

– warning: hostname: RBL lookup error: Host or domain name not found. Name
service error for name[] type[] Host not found, try again 1665

– NOQUEUE: reject: RCPT from unknown[IP]: 554 Service unavailable; Client host
[IP] blocked using hostname; http://hostname/listing?IP; from[] to[] proto[] helo[]
1751

– NOQUEUE: reject: RCPT from hostname[IP]: 554 Service unavailable; Client host
[IP] blocked using hostname; Dynamic IP Addresses See: http://hostname/hostnameml?IP;
from[] to[] proto[] helo[] 1792

– NOQUEUE: reject: RCPT from unknown[IP]: 450 <@>: Recipient address rejected:
Greylisted for 5 minutes; from[] to[] proto[] helo[] 1836

– TLS connection established from hostname[IP]: TLSv1 with cipher DHE-RSA-AES256-
SHA (256/256 bits) 1931

APPENDIX C. ANALYSIS OF SEMANTICS 211

– too many errors after RCPT from hostname[IP] 2065

– lost connection after EHLO from hostname[IP] 2359

– NOQUEUE: reject: RCPT from unknown[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; Blocked - see http://hostname/hostnameml?IP;
from[] to[] proto[] helo[] 2411

– NOQUEUE: reject: RCPT from hostname[IP]: 554 Service unavailable; Client host
[IP] blocked using hostname; http://hostname/listing?IP; from[] to[] proto[] helo[]
2910

– NOQUEUE: reject: RCPT from unknown[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; Dynamic IP Addresses See: http://hostname/hostnameml?IP;
from[] to[] proto[] helo[] 2995

– TLS connection established from unknown[IP]: TLSv1 with cipher DHE-RSA-AES256-
SHA (256/256 bits) 3103

– setting up TLS connection from unknown[IP] 3128

– NOQUEUE: reject: RCPT from unknown[IP]: 450 <@>: Sender address rejected:
Domain not found; from[] to[] proto[] helo[] 3156

– lost connection after RSET from hostname[IP] 3558

– NOQUEUE: reject: RCPT from unknown[IP]: 551 <@>: Recipient address rejected:
This mailbox is no longer valid. Goodbye!; from[] to[] proto[] helo[] 3859

– NOQUEUE: reject: RCPT from unknown[IP]: 554 Service unavailable; Client host
[IP] blocked using hostname; http://hostname/query/bl?ip[] from[] to[] proto[] helo[]
4496

– NOQUEUE: reject: RCPT from unknown[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; http://hostname/listing?IP; from[] to[] proto[] helo[]
4611

– NOQUEUE: reject: RCPT from unknown[IP]: 450 <@>: Recipient address rejected:
Domain not found; from[] to[] proto[] helo[] 5239

– warning: IP: address not listed for hostname hostname 5378

– NOQUEUE: reject: RCPT from hostname[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; http://hostname/listing?IP; from[] to[] proto[] helo[]
5390

APPENDIX C. ANALYSIS OF SEMANTICS 212

– NOQUEUE: reject: RCPT from hostname[IP]: 450 <@>: Recipient address rejected:
Greylisted for 5 minutes; from[] to[] proto[] helo[] 5611

– warning: Connection rate limit exceeded: # from hostname[IP] for service smtp 5775

– NOQUEUE: reject: RCPT from hostname[IP]: 554 Service unavailable; Client host
[IP] blocked using hostname; http://hostname/query/bl?ip[] from[] to[] proto[] helo[]
6414

– timeout after DATA from hostname[IP] 6628

– NOQUEUE: reject: RCPT from hostname[IP]: 551 <@>: Recipient address rejected:
This mailbox is no longer valid. Goodbye!; from[] to[] proto[] helo[] 6975

– #Hex#: reject: RCPT from hostname[IP]: 450 4.1.2 <@>: Recipient address re-
jected: Domain not found; from[] to[] proto[] helo[] 7028

– NOQUEUE: reject: RCPT from hostname[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; Blocked - see http://hostname/hostnameml?IP;from[]
to[] proto[] helo[] 8361

– NOQUEUE: reject: RCPT from hostname[IP]: 450 <@>: Sender address rejected:
Domain not found; from[] to[] proto[] helo[] 8420

– NOQUEUE: reject: RCPT from unknown[IP]: 450 4.7.1 <@>: Recipient address
rejected: Greylisted for 5 minutes; from[] to[] proto[] helo[] 8962

– lost connection after DATA from unknown[IP] 11455

– NOQUEUE: reject: RCPT from unknown[IP]: 450 4.1.8 <@>: Sender address re-
jected: Domain not found; from[] to[] proto[] helo[] 12342

– lost connection after CONNECT from unknown[IP] 12416

– NOQUEUE: reject: RCPT from hostname[IP]: 504 <@> to[] proto[] helo[] 13922

– lost connection after CONNECT from hostname[IP] 14587

– NOQUEUE: reject: RCPT from unknown[IP]: 504 <@> to[] proto[] helo[] 15466

– NOQUEUE: reject: RCPT from hostname[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; Dynamic IP Addresses See: http://hostname/hostnameml?IP;
from[] to[] proto[] helo[] 15978

– lost connection after DATA from hostname[IP] 17201

APPENDIX C. ANALYSIS OF SEMANTICS 213

– NOQUEUE: reject: RCPT from unknown[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; http://hostname/query/bl?ip[] from[] to[] proto[]
helo[] 19497

– NOQUEUE: reject: RCPT from unknown[IP]: 551 5.7.1 <@>: Recipient address
rejected: This mailbox is no longer valid. Goodbye!; from[] to[] proto[] helo[] 22551

– NOQUEUE: reject: RCPT from hostname[IP]: 450 4.1.8 <@>: Sender address re-
jected: Domain not found; from[] to[] proto[] helo[] 22900

– warning: Connection concurrency limit exceeded: # from hostname[IP] for service
smtp 23437

– NOQUEUE: reject: RCPT from hostname[IP]: 450 4.7.1 <@>: Recipient address
rejected: Greylisted for 5 minutes; from[] to[] proto[] helo[] 29384

– NOQUEUE: reject: RCPT from hostname[IP]: 554 5.7.1 Service unavailable; Client
host [IP] blocked using hostname; http://hostname/query/bl?ip[] from[] to[] proto[]
helo[] 33330

– NOQUEUE: reject: RCPT from hostname[IP]: 551 5.7.1 <@>: Recipient address
rejected: This mailbox is no longer valid. Goodbye!; from[] to[] proto[] helo[] 36728

– NOQUEUE: reject: RCPT from unknown[IP]: 504 5.5.2 <@> to[] proto[] helo[]
44377

– warning: IP: hostname hostname verification failed: hostname nor servname pro-
vided, or not known 45577

– NOQUEUE: reject: RCPT from hostname[IP]: 504 5.5.2 <@> to[] proto[] helo[]
47996

– lost connection after RCPT from unknown[IP] 58639

– lost connection after RCPT from hostname[IP] 79175

– NOQUEUE: reject: RCPT from hostname[IP]: 450 <@>: Recipient address rejected:
Domain not found; from[] to[] proto[] helo[] 129813

– disconnect from unknown[IP] 155933

– connect from unknown[IP] 156003

– TLS connection established from hostname[IP]: TLSv1 with cipher ADH-AES256-
SHA (256/256 bits) 171060

– setting up TLS connection from hostname[IP] 173965

APPENDIX C. ANALYSIS OF SEMANTICS 214

– NOQUEUE: reject: RCPT from hostname[IP]: 450 4.1.2 <@>: Recipient address
rejected: Domain not found; from[] to[] proto[] helo[] 281910

– #Hex#: client[] 2068726

– disconnect from hostname[IP] 2556625

– connect from hostname[IP] 2557395

• postfix/cleanup

– #Hex#: resent-message-id[] 1055

– warning: #Hex#: virtual_alias_maps map lookup problem for email 2270

– #Hex#: message-id[] 2093881

• postfix/smtp

– connect to hostname[IP]: Permission denied (port 25) 1136

– #Hex#: to[] orig_to[] relay[] delay[] delays[] dsn[] status[] (message) 1313

– #Hex#: lost connection with hostname[IP] while sending message body 1390

– #Hex#: to[] orig_to[] relay[] delay[] status[] (message) 1434

– #Hex#: host hostname[IP] said: 451 hostname Resources temporarily unavailable.
Please try again later [#4.16.5]. (in reply to end of DATA command) 1539

– connect to hostname[IP]: server dropped connection without sending the initial SMTP
greeting (port 25) 1945

– #Hex#: host hostname[IP] said: 451 Message temporarily deferred - [170] (in reply
to end of DATA command) 2128

– connect to IP[IP]: Connection refused (port 10024) 2305

– #Hex#: lost connection with hostname[IP] while receiving the initial server greeting
2366

– connect to hostname[IP]: server refused to talk to me: 554- (RTR:BG) http://hostname/errors/hostnamel
(port 25) 2392

– certificate verification failed for hostname: num[] signed certificate in certificate
chain 2593

APPENDIX C. ANALYSIS OF SEMANTICS 215

– #Hex#: host hostname[IP] refused to talk to me: 554 5.7.1 IP: Connection refused.
Your IP address is blocked(anti-spam). 3202

– connect to hostname[IP]: server refused to talk to me: 421 Insufficient System Stor-
age.(IMail 7.07) (port 25) 3226

– certificate peer name verification failed for hostname: CommonName mis-match:
hostname 7032

– connect to hostname[IP]: No route to host (port 25) 7939

– #Hex#: host hostname[IP] said: 451 The users mailbox is full. Please try re-sending
your e-mail later. (in reply to RCPT TO command) 10852

– certificate verification failed for hostname: num[] not trusted 12723

– certificate verification failed for hostname: num[] to verify the first certificate 13137

– certificate verification failed for hostname: num[] to get local issuer certificate 13349

– certificate verification failed for hostname: num[] signed certificate 17234

– Server certificate could not be verified 17490

– certificate verification failed for hostname: num[] has expired 18321

– certificate verification failed for hostname:certificate has expired 36627

– connect to hostname[IP]: Connection refused (port 25) 60401

– connect to hostname[IP]: Operation timed out (port 25) 87784

– #Hex#: to[] relay[] conn_use[] delay[] delays[] dsn[] status[] (message) 255658

– #Hex#: to[] relay[] delay[] status[] (message) 694954

– #Hex#: to[] relay[] delay[] delays[] dsn[] status[] (message) 1831814

• amavis

– (#####-##) Passed SPAM, [IP] [IP] <@> -> <@>+ Message-ID{} mail_id{} Hits{}
ms 1024

– (#####-##) (!!)ClamAV-clamd av-scanner FAILED{} Too many retries to talk to
/var/run/clamav/clamd (Can’t connect to UNIX socket /var/run/clamav/clamd{} re-
fused) at (eval 68) line 293. at (eval 68) line 491. 1472

APPENDIX C. ANALYSIS OF SEMANTICS 216

– (#####-##) (!)run_av (ClamAV-clamd, built-in i/f){} many retries to talk to /var/run/clamav/clamd
(Can’t connect to UNIX socket /var/run/clamav/clamd{} refused) at (eval 68) line
293. 1472

– (#####-##) (!)ClamAV-clamd{} connect to UNIX socket /var/run/clamav/clamd{}
refused, retrying (2) 1487

– (#####-##) Passed CLEAN, <@> -> <@>+ Message-ID{} mail_id{} Hits{} queued_as{}
ms 2593

– (#####-##) Passed CLEAN, [IP] [IP] <@>, Message-ID{} mail_id{} Hits{} # ms
2665

– (#####-##) Blocked INFECTED (virus) [IP] [IP] <@> -> <@>+ quarantine{} Message-
ID{} mail_id{} Hits{} # ms 2844

– (#####-##-##) Passed CLEAN, [IP] [IP] <@>, Message-ID{} mail_id{} Hits{} queued_as{}
ms 3647

– (#####-##) (!!)avast! Antivirus - Client/Server Version av-scanner FAILED{} unex-
pected exit 35, output[] failed to scan{} connect to avast! server" at (eval 68) line
491. 6471

– (#####-##) (!!)run_av (avast! Antivirus - Client/Server Version) FAILED - unex-
pected exit 35, output[] failed to scan{} connect to avast! server" 6471

– (#####-##-##) Passed CLEAN, [IP] [IP] <@> -> <@>+ Message-ID{} mail_id{}
Hits{} # ms 7014

– (#####-##) Passed BAD-HEADER, [IP] [IP] <@> -> <@>+ quarantine{} Message-
ID{} mail_id{} Hits{} queued_as{} # ms 7965

– (#####-##-##) Blocked SPAM, [IP] [IP] <@> -> <@>+ quarantine{} Message-ID{}
mail_id{} Hits{} # ms 15819

– (#####-##) Passed SPAMMY, [IP] [IP] <@> -> <@>+ Message-ID{} mail_id{}
Hits{} queued_as{} # ms 16903

– (#####-##-##) Passed CLEAN, [IP] [IP] <@> -> <@>+ Message-ID{} mail_id{}
Hits{} queued_as{} # ms 35688

– (#####-##) Passed CLEAN, [IP] [IP] <@>, Message-ID{} mail_id{} Hits{} queued_as{}
ms 37620

– (#####-##) Blocked SPAM, [IP] [IP] <@> -> <@>+ quarantine{} Message-ID{}
mail_id{} Hits{} # ms 52013

APPENDIX C. ANALYSIS OF SEMANTICS 217

– (#####-##) Passed CLEAN, [IP] [IP] <@> -> <@>+ Message-ID{} mail_id{} Hits{}
ms 99783

– (#####-##) Passed CLEAN, [IP] [IP] <@> -> <@>+ Message-ID{} mail_id{} Hits{}
queued_as{} # ms 718719

Appendix D

Zero-Frequency characters

The ASCII values can be divided into three parts, the non printable characters (system codes)
which are between 0 and 31, the lower ASCII values which are between 32 and 127 and the
higher ASCII values which are between 128 and 255. The higher ASCII values are also known
as known as Extended ASCII charcaters and are all zero-frequency characters. In the table below,
the zero-frequency characters are marked in bold and ^x (where x is a character) refers to the
control key sequence for a character. The only system code which is used is ASCII character 10
which is the newline character (\n).

0 ^@ 13 ^M 26 ^Z 39 ’ 52 4 65 A 78 N 91 [104 h 117 u

1 ^A 14 ^N 27 ^[40 (53 5 66 B 79 O 92 \ 105 i 118 v

2 ^B 15 ^O 28 ^\ 41) 54 6 67 C 80 P 93] 106 j 119 w

3 ^C 16 ^P 29 ^] 42 * 55 7 68 D 81 Q 94 ^ 107 k 120 x

4 ^D 17 ^Q 30 ^^ 43 + 56 8 69 E 82 R 95 _ 108 l 121 y

5 ^E 18 ^R 31 ^_ 44 , 57 9 70 F 83 S 96 ‘ 109 m 122 z

6 ^F 19 ^S 32 ‘ 45 - 58 : 71 G 84 T 97 a 110 n 123 {

7 ^G 20 ^T 33 ! 46 . 59 ; 72 H 85 U 98 b 111 o 124 |

8 ^H 21 ^U 34 “ 47 / 60 < 73 I 86 V 99 c 112 p 125 }

9 ^I 22 ^V 35 # 48 0 61 = 74 J 87 W 100 d 113 q 126 ~

10 ^J 23 ^W 36 $ 49 1 62 > 75 K 88 X 101 e 114 r 127 ^?

11 ^K 24 ^X 37 % 50 2 63 ? 76 L 89 Y 102 f 115 s

12 ^L 25 ^Y 38 & 51 3 64 @ 77 M 90 Z 103 g 116 t

218

Appendix E

Electronic Appendix

The attached DVD contains the following:

E.1 Scripts

There are a number of scripts which were used in this thesis. The Scripts folder contains all the
different scripts which are used.

E.1.1 Compression tests

The scripts for compression tests are contained in the Compression and Decompression Time
folder.

E.1.2 Memory Utilisation tests

The scripts for the memory utilisation tests are contained in the Memory Utilisation folder.

E.1.3 Date and IP preprocessors

The scripts for the preprocessors which transform the date and IP are located in the Date and IP
folder.

219

APPENDIX E. ELECTRONIC APPENDIX 220

E.1.4 Analysis of syslog message semantic

The scripts for the analysing the syslog message sematics are located in the Analyse syslog
folder.

E.1.5 Dictionary generation

Three different scripts were used for dictionary generation. These scripts are contained in the
Word Replacement folder.

E.2 Detailed Results

Detailed Results are contained in the Results folder. Within this folder, each chapter has a
separate folder which contain the full results from the compression tests and memory tests.

E.3 Analysis of Results for different compression levels

Each compression level of the seven compression programs achieves different results and the pre-
processors cause a different amounts of improvement in compression ratio, compression time,
decompression time, transfer time and memory utilisation. CompressionLevels.pdf contains
graphs and detailed analysis of the results for the different compression levels of the seven com-
pression programs.

E.4 Electronic References and Web References

Electronic copies of the references and web reference used can be found in the References folder.
A web interface (index.html) which lists the references and contains links to the files can also be
found in this folder.

